Showing 1025 open source projects for "machine"

View related business solutions
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 1
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Paddle Quantum

    Paddle Quantum

    Paddle Quantum

    ...It has been utilized for developing several quantum machine learning applications. With the PaddlePaddle deep learning platform empowering QC, Paddle Quantum provides strong support for the scientific research community and developers in the field to easily develop QML applications. Moreover, it provides a learning platform for quantum computing enthusiasts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets that are of varying sizes and cover a variety graph machine learning tasks, including prediction of node, link, and graph properties. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 5
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    XLabel

    XLabel

    XLabel: An Explainable Data Labeling Assistant

    XLabel is an open-source Streamlit app that takes an explainable machine-learning approach to visual-interactive data labeling. Predict the most probable labels using Explainable Boosting Machine (EBM). Show the contributions of each feature towards the predicted labels. Provide an option to write the labels directly into the data file (use XLabel.py) or save them in a separate file (use XLabelDL.py) Support data with multiple labels and multiple classes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Img2Txt

    Img2Txt

    Img2Txt - Extract Text From Images using AI

    Important: If you are sharing this program. Please Include the official Download Link What is Img2Txt? Img2Txt is a Python-based application packaged using PyInstaller that utilizes the power of pytesseract, an AI-powered optical character recognition (OCR) library, to extract text from images and convert it into plain text. The application features a simple and modern user-friendly interface created using customtkinter, allowing users to easily process images and obtain the text...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 8
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 10
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    Many-to-one attention mechanism for Keras. We demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. As the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Orchest

    Orchest

    Build data pipelines, the easy way

    ...Each step runs a file in a container. It's that simple! Spin up services whose lifetime spans across the entire pipeline run. Easily define your dependencies to run on any machine. Run any subset of the pipeline directly or periodically.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch. It implements distributed training and optimized inference for state-of-the-art models, powering Amazon Translate and other MT applications. For a quickstart guide to training a standard NMT model on any size of data, see the WMT 2014 English-German tutorial. If you are interested in collaborating or have any questions, please submit a pull request or issue.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    auto-sklearn

    auto-sklearn

    Automated machine learning with scikit-learn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself and contains a multitude of improvements which speed up the fitting the AutoML system. auto-sklearn 2.0 works the same way as regular auto-sklearn. auto-sklearn is licensed the same way as scikit-learn, namely the 3-clause BSD license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    FFCV

    FFCV

    Fast Forward Computer Vision (and other ML workloads!)

    ffcv is a drop-in data loading system that dramatically increases data throughput in model training. From gridding to benchmarking to fast research iteration, there are many reasons to want faster model training. Below we present premade codebases for training on ImageNet and CIFAR, including both (a) extensible codebases and (b) numerous premade training configurations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    BERTScore

    BERTScore

    BERT score for text generation

    Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is Microsoft/debate-large-online, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    DeepFaceLive

    DeepFaceLive

    Real-time face swap for PC streaming or video calls

    You can swap your face from a webcam or the face in the video using trained face models. There is also a Face Animator module in DeepFaceLive app. You can control a static face picture using video or your own face from the camera. The quality is not the best, and requires fine face matching and tuning parameters for every face pair, but enough for funny videos and memes or real-time streaming at 25 fps using 35 TFLOPS GPU.
    Downloads: 501 This Week
    Last Update:
    See Project
  • 18
    ManimML

    ManimML

    ManimML is a project focused on providing animations

    ManimML is a project focused on providing animations and visualizations of common machine-learning concepts with the Manim Community Library. Please check out our paper. We want this project to be a compilation of primitive visualizations that can be easily combined to create videos about complex machine-learning concepts. Additionally, we want to provide a set of abstractions that allow users to focus on explanations instead of software engineering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Merlion

    Merlion

    A Machine Learning Framework for Time Series Intelligence

    Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processing model outputs, and evaluating model performance. It supports various time series learning tasks, including forecasting, anomaly detection, and change point detection for both univariate and multivariate time series. This library aims to provide engineers and researchers a one-stop solution to rapidly develop models for their specific time series needs, and benchmark them across multiple time series datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    The Art of Programming

    The Art of Programming

    A collection of practical tips can be found at the bottom of this page

    ...In July 2023, work on the second edition was announced, which expands the project with updated content, new problems inspired by recent big-tech interviews, and introductions to modern machine learning techniques such as XGBoost, CNNs, RNNs, and LSTMs. This collection serves both as a historical record of algorithm problem-solving and as a living resource for programmers preparing for interviews.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    CodeContests

    CodeContests

    Large dataset of coding contests designed for AI and ML model training

    ...Each problem includes structured metadata, problem descriptions, paired input/output test cases, and multiple correct and incorrect solutions in various programming languages. The dataset is distributed in Riegeli format using Protocol Buffers, with separate training, validation, and test splits for reproducible machine learning experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Compose

    Compose

    A machine learning tool for automated prediction engineering

    Compose is a machine learning tool for automated prediction engineering. It allows you to structure prediction problems and generate labels for supervised learning. An end user defines an outcome of interest by writing a labeling function, then runs a search to automatically extract training examples from historical data. Its result is then provided to Featuretools for automated feature engineering and subsequently to EvalML for automated machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Classic HWUT - rename of previous HWUT

    Classic HWUT - rename of previous HWUT

    Software Unit Tests (Language Independent Approach)

    ...In particular for C, HWUT supports make file generation using 'sos' and 'sols' modes. Remote control-able function stubs may be generated using the 'stub' mode. Test cases can be generated using the 'gen' mode, and state machine walkers by the 'sm_walker' mode. Over the last decade HWUT has matured towards a full fledged unit test tool for a wide variety of applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BG Remover - offline

    BG Remover - offline

    AI powered Offline Background Remover.

    Our Offline AI-powered Background Remover Desktop App effortlessly removes backgrounds from any image or photo. It utilizes the latest machine learning algorithms to provide accurate results within seconds. Download now and experience the ease and efficiency of our AI-powered solution.
    Downloads: 37 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB