Showing 657 open source projects for "machine"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AIβ€”on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like β€œBuild me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 1
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksiiβ€―Trekhleb containing Python implementations of classic machine-learning algorithms done β€œfrom scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    ...If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations.
    Downloads: 19 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3β€”Google’s most advanced reasoning and coding modelβ€”plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    Django friendly finite state machine

    Django friendly finite state machine

    Django friendly finite state machine support

    Django-fsm adds simple declarative state management for Django models. If you need parallel task execution, view, and background task code reuse over different flows - check my new project Django-view flow. Instead of adding a state field to a Django model and managing its values by hand, you use FSMField and mark model methods with the transition decorator. These methods could contain side effects of the state change. You may also take a look at the Django-fsm-admin project containing a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    scikit-learn

    scikit-learn

    Machine learning in Python

    scikit-learn is an open source Python module for machine learning built on NumPy, SciPy and matplotlib. It offers simple and efficient tools for predictive data analysis and is reusable in various contexts.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 7
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 8
    YOLOv5

    YOLOv5

    YOLOv5 is the world's most loved vision AI

    ...Its streamlined design makes it suitable for various applications and easily adaptable to different hardware platforms, from edge devices to cloud APIs. Explore the YOLOv8 Docs, a comprehensive resource designed to help you understand and utilize its features and capabilities. Whether you are a seasoned machine learning practitioner or new to the field, this hub aims to maximize YOLOv8's potential in your projects.
    Downloads: 66 This Week
    Last Update:
    See Project
  • 9
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 10
    SageMaker Python SDK

    SageMaker Python SDK

    Training and deploying machine learning models on Amazon SageMaker

    SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    deepface

    deepface

    A Lightweight Face Recognition and Facial Attribute Analysis

    DeepFace is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, FaceNet, OpenFace, DeepFace, DeepID, ArcFace, Dlib, SFace and GhostFaceNet. Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.
    Downloads: 43 This Week
    Last Update:
    See Project
  • 12
    Keras

    Keras

    Python-based neural networks API

    Python Deep Learning library
    Downloads: 11 This Week
    Last Update:
    See Project
  • 13
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    Originally developed by Google for internal use, TensorFlow is an open source platform for machine learning. Available across all common operating systems (desktop, server and mobile), TensorFlow provides stable APIs for Python and C as well as APIs that are not guaranteed to be backwards compatible or are 3rd party for a variety of other languages. The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). ...
    Downloads: 14 This Week
    Last Update:
    See Project
  • 14
    Nixtla TimeGPT

    Nixtla TimeGPT

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    ...Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable of accurately predicting various domains such as retail, electricity, finance, and IoT.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    River ML

    River ML

    Online machine learning in Python

    River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    PyCaret

    PyCaret

    An open-source, low-code machine learning library in Python

    PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive. In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Key-book

    Key-book

    Proofs, cases, concept supplements, and reference explanations

    The book "Introduction to Machine Learning Theory" (hereinafter referred to as "Introduction") written by Zhou Zhihua, Wang Wei, Gao Wei, and other teachers fills the regret of the lack of introductory works on machine learning theory in China. This book attempts to provide an introductory guide for readers interested in learning machine learning theory and researching machine learning theory in an easy-to-understand language.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, generation, certification, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ...Additionally, the machine-learning nature of ChatterBot allows an agent instance to improve it’s own knowledge of possible responses as it interacts with humans and other sources of informative data. An untrained instance of ChatterBot starts off with no knowledge of how to communicate. Each time a user enters a statement, the library saves the text that they entered and the text that the statement was in response to.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    fklearn

    fklearn

    Functional Machine Learning

    fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Mlxtend

    Mlxtend

    A library of extension and helper modules for Python's data analysis

    Mlxtend (machine learning extensions) is a Python library of useful tools for day-to-day data science tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    EconML is a Python package for estimating heterogeneous treatment effects from observational data via machine learning. This package was designed and built as part of the ALICE project at Microsoft Research with the goal of combining state-of-the-art machine learning techniques with econometrics to bring automation to complex causal inference problems. One of the biggest promises of machine learning is to automate decision-making in a multitude of domains.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB