Showing 2 open source projects for "machine"

View related business solutions
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    ...The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine scheduler for larger images. The big surprise is that the generations can reach this level of fidelity. Will need to verify this on my own machine. Additionally, we will try adding an extra linear attention on the main branch as well as self-conditioning in the pixel space. The insight of being able to self-condition on any hidden state of the network as well as the newly proposed sigmoid noise schedule are the two main findings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB