Showing 173 open source projects for "ml-so1v"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    The Grand Complete Data Science Guide

    The Grand Complete Data Science Guide

    Data Science Guide With Videos And Materials

    The Grand Complete Data Science Materials is a repository curated by a data-science educator that aggregates a wide range of learning resources — from basic programming and math foundation to advanced topics in machine learning, deep learning, natural language processing, computer vision, and deployment practices — into a structured, centralized collection aimed at learners seeking a comprehensive path to data science mastery. The repository bundles tutorials, lecture notes, project outlines, course materials, and references across topics like Python, statistics, ML algorithms, deep learning, NLP, data preprocessing, model evaluation, and real-world problem solving. Its broad scope makes it particularly suitable for beginners or self-taught programmers who want an end-to-end learning track — from fundamentals all the way to building and deploying ML or AI systems.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    NErlNet

    NErlNet

    Nerlnet is a framework for research and development

    NErlNet is a research-grade framework for distributed machine learning over IoT and edge devices. Built with Erlang (Cowboy HTTP), OpenNN, and Python (Flask), it enables simulation of clusters on a single machine or real deployment across heterogeneous devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Feast

    Feast

    Feature Store for Machine Learning

    ...Avoid data leakage by generating point-in-time correct feature sets so data scientists can focus on feature engineering rather than debugging error-prone dataset joining logic. This ensure that future feature values do not leak to models during training. Decouple ML from data infrastructure by providing a single data access layer that abstracts feature storage from feature retrieval, ensuring models remain portable as you move from training models to serving models, from batch model
    Downloads: 7 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    ...This package helps you find label issues and other data issues, so you can train reliable ML models. All features of cleanlab work with any dataset and any model. Yes, any model: PyTorch, Tensorflow, Keras, JAX, HuggingFace, OpenAI, XGBoost, scikit-learn, etc. If you use a sklearn-compatible classifier, all cleanlab methods work out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    omegaml

    omegaml

    MLOps simplified. From ML Pipeline ⇨ Data Product without the hassle

    omega|ml is the innovative Python-native MLOps platform that provides a scalable development and runtime environment for your Data Products. Works from laptop to cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    ...The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with MobileCLIP2 variants matching or surpassing larger baselines at notably lower parameter counts and runtime on mobile devices. A companion “mobileclip-dr” repository details large-scale, distributed data-generation pipelines used to reinforce datasets across billions of samples on thousands of GPUs. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    ...And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    TikZ

    TikZ

    TikZ figures for concepts in physics/chemistry/ML

    Collection of 111 standalone TikZ figures for illustrating concepts in physics, chemistry, and machine learning. Check out janosh.github.io to search, sort, open in Overleaf, and download figures (PDF/SVG/PNG) from this collection.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    ...Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. CoreNet integrates tightly with Apple’s proprietary ML stack and hardware, serving as the foundation for research in computer vision, language models, and multimodal systems within Apple AI. The framework includes monitoring tools, fault tolerance mechanisms, and efficient checkpointing for massive training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Covalent workflow

    Covalent workflow

    Pythonic tool for running machine-learning/high performance workflows

    ...Covalent overcomes computational and operational challenges inherent in AI/ML experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    The TensorFlow Model Optimization Toolkit is a suite of tools for optimizing ML models for deployment and execution. Among many uses, the toolkit supports techniques used to reduce latency and inference costs for cloud and edge devices (e.g. mobile, IoT). Deploy models to edge devices with restrictions on processing, memory, power consumption, network usage, and model storage space. Enable execution on and optimize for existing hardware or new special purpose accelerators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Union Pandera

    Union Pandera

    Light-weight, flexible, expressive statistical data testing library

    The open-source framework for precision data testing for data scientists and ML engineers. Pandera provides a simple, flexible, and extensible data-testing framework for validating not only your data but also the functions that produce them. A simple, zero-configuration data testing framework for data scientists and ML engineers seeking correctness. Access a comprehensive suite of built-in tests, or easily create your own validation rules for your specific use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    ...Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source, modular API for differential privacy research. Everyone is welcome to contribute. ML practitioners will find this to be a gentle introduction to training a model with differential privacy as it requires minimal code changes. Differential Privacy researchers will find this easy to experiment and tinker with, allowing them to focus on what matters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    imbalanced-learn

    imbalanced-learn

    A Python Package to Tackle the Curse of Imbalanced Datasets in ML

    Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying on scikit-learn (imported as sklearn) and provides tools when dealing with classification with imbalanced classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Pfl Research

    Pfl Research

    Simulation framework for accelerating research

    A fast, modular Python framework released by Apple for privacy-preserving federated learning (PFL) simulation. Integrates with TensorFlow, PyTorch, and classical ML, and offers high-speed distributed simulation (7–72× faster than alternatives).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Qbot

    Qbot

    AI-powered Quantitative Investment Research Platform

    Qbot is an open source quantitative research and trading platform that provides a full pipeline from data ingestion and strategy development to backtesting, simulation, and (optionally) live trading. It bundles a lightweight GUI client (built with wxPython) and a modular backend so researchers can iterate on strategies, run batch backtests, and validate ideas in a near-real simulated environment that models latency and slippage. The project places special emphasis on AI-driven strategies —...
    Downloads: 21 This Week
    Last Update:
    See Project
  • 21
    Groq Python

    Groq Python

    The official Python Library for the Groq API

    ...This makes it easy to integrate Groq-powered AI capabilities into backend services, data pipelines, research notebooks, or applications written in Python. For those building AI-based tooling, automation scripts, or ML-backed backends, groq-python abstracts away HTTP request plumbing and exposes a clean API, accelerating development and reducing boilerplate.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    ...It abstracts the common way to preprocess the data, construct the machine learning models, and perform hyper-parameter tuning to find the best model. It is no black box, as you can see exactly how the ML pipeline is constructed (with a detailed Markdown report for each ML model).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    LightAutoML

    LightAutoML

    Fast and customizable framework for automatic ML model creation

    LightAutoML is an automated machine learning (AutoML) framework optimized for efficient model training and hyperparameter tuning, focusing on both tabular and text data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    The Algorithms Python

    The Algorithms Python

    All Algorithms implemented in Python

    The Algorithms-Python project is a comprehensive collection of Python implementations for a wide range of algorithms and data structures. It serves primarily as an educational resource for learners and developers who want to understand how algorithms work under the hood. Each implementation is designed with clarity in mind, favoring readability and comprehension over performance optimization. The project covers various domains including mathematics, cryptography, machine learning, sorting,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 25
    Screenshot to Code

    Screenshot to Code

    A neural network that transforms a design mock-up into static websites

    Screenshot-to-code is a tool or prototype that attempts to convert UI screenshots (e.g., of mobile or web UIs) into code representations, likely generating layouts, HTML, CSS, or markup from image inputs. It is part of a research/proof-of-concept domain in UI automation and image-to-UI code generation. Mapping visual design to code constructs. Code/UI layout (HTML, CSS, or markup). Examples/demo scripts showing “image UI code”.
    Downloads: 3 This Week
    Last Update:
    See Project