Search Results for "python q learning" - Page 18

Showing 1002 open source projects for "python q learning"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    SageMaker Experiments Python SDK

    SageMaker Experiments Python SDK

    Experiment tracking and metric logging for Amazon SageMaker notebooks

    Experiment tracking in SageMaker Training Jobs, Processing Jobs, and Notebooks. SageMaker Experiments is an AWS service for tracking machine learning Experiments. The SageMaker Experiments Python SDK is a high-level interface to this service that helps you track Experiment information using Python. Experiment tracking powers the machine learning integrated development environment Amazon SageMaker Studio. Experiment: A collection of related Trials. Add Trials to an Experiment that you wish...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DeepH-pack

    DeepH-pack

    Deep neural networks for density functional theory Hamiltonian

    DeepH-pack is the official implementation of the DeepH (Deep Hamiltonian) method described in the paper Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation and in the Research Briefing. DeepH-pack supports DFT results made by ABACUS, OpenMX, FHI-aims or SIESTA and will support HONPAS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Gorilla CLI

    Gorilla CLI

    LLMs for your CLI

    Gorilla CLI powers your command-line interactions with a user-centric tool. Simply state your objective, and Gorilla CLI will generate potential commands for execution. Gorilla today supports ~1500 APIs, including Kubernetes, AWS, GCP, Azure, GitHub, Conda, Curl, Sed, and many more. No more recalling intricate CLI arguments.
    Downloads: 0 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    Your PyTorch AI Factory, Flash enables you to easily configure and run complex AI recipes for over 15 tasks across 7 data domains. In a nutshell, Flash is the production-grade research framework you always dreamed of but didn't have time to build. All data loading in Flash is performed via a from_* classmethod on a DataModule. Which DataModule to use and which from_* methods are available depends on the task you want to perform. For example, for image segmentation where your data is stored...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MMOCR

    MMOCR

    OpenMMLab Text Detection, Recognition and Understanding Toolbox

    MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the corresponding downstream tasks including key information extraction. It is part of the OpenMMLab project. The toolbox supports not only text detection and text recognition, but also their downstream tasks such as key information extraction. The toolbox supports a wide variety of state-of-the-art models for text detection, text recognition and key information extraction. The modular...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    learn2learn

    learn2learn

    A PyTorch Library for Meta-learning Research

    Learn2Learn is a PyTorch-based library focused on meta-learning and few-shot learning research. It provides reusable components and meta-learning algorithms, making it easier to build, train, and evaluate models that can quickly adapt to new tasks with minimal data. Learn2Learn is widely used in research for tasks such as few-shot classification, reinforcement learning, and optimization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AI Explainability 360

    AI Explainability 360

    Interpretability and explainability of data and machine learning model

    The AI Explainability 360 toolkit is an open-source library that supports the interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 10
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    pyts

    pyts

    A Python package for time series classification

    pyts is a Python package dedicated to time series classification. It aims to make time series classification easily accessible by providing preprocessing and utility tools, and implementations of several time series classification algorithms. The package comes up with many unit tests and continuous integration ensures new code integration and backward compatibility. The package is distributed under the 3-clause BSD license.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CORL

    CORL

    High-quality single-file implementations of SOTA Offline

    CORL (Collection of Reinforcement Learning Environments for Control Tasks) is a modular and extensible set of high-quality reinforcement learning environments focused on continuous control and robotics. It aims to offer standardized environments suitable for benchmarking state-of-the-art RL algorithms in control tasks, including physics-based simulations and custom-designed scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    Horovod was originally developed by Uber to make distributed deep learning fast and easy to use, bringing model training time down from days and weeks to hours and minutes. With Horovod, an existing training script can be scaled up to run on hundreds of GPUs in just a few lines of Python code. Horovod can be installed on-premise or run out-of-the-box in cloud platforms, including AWS, Azure, and Databricks. Horovod can additionally run on top of Apache Spark, making it possible to unify data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ... will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. We provide a demo, with no installation required, to get started on using TF-Ranking. This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    TF2 Deep FloorPlan Recognition using a Multi-task Network with Room-boundary-Guided Attention. Enable tensorboard, quantization, flask, tflite, docker, github actions and google colab. This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'. It rewrites the original codes from zlzeng/DeepFloorplan into newer versions of Tensorflow and Python.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    ...-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 19
    Paddle Quantum

    Paddle Quantum

    Paddle Quantum

    Paddle Quantum (量桨) is the world's first cloud-integrated quantum machine learning platform based on Baidu PaddlePaddle. It supports the building and training of quantum neural networks, making PaddlePaddle the first deep-learning framework in China. Paddle Quantum is feature-rich and easy to use. It provides comprehensive API documentation and tutorials help users get started right away. Paddle Quantum aims at establishing a bridge between artificial intelligence (AI) and quantum computing (QC...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Transformers-Interpret

    Transformers-Interpret

    Model explainability that works seamlessly with Hugging Face

    Transformers-Interpret is an interpretability tool for Transformer-based NLP models, providing insights into attention mechanisms and feature importance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    texturize

    texturize

    Generate photo-realistic textures based on source images

    Generate photo-realistic textures based on source images. Remix, remake, mashup! Useful if you want to create variations on a theme or elaborate on an existing texture. A command-line tool and Python library to automatically generate new textures similar to a source image or photograph. It's useful in the context of computer graphics if you want to make variations on a theme or expand the size of an existing texture. This software is powered by deep learning technology, using a combination...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to develop...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a...
    Downloads: 5 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.