The "/v8.0.0/README.md" file could not be found or is not available. Please select another file.

Search Results for "python q learning" - Page 17

Showing 1002 open source projects for "python q learning"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas | Run databases anywhere Icon
    MongoDB Atlas | Run databases anywhere

    Ensure the availability of your data with coverage across AWS, Azure, and GCP on MongoDB Atlas—the multi-cloud database for every enterprise.

    MongoDB Atlas allows you to build and run modern applications across 125+ cloud regions, spanning AWS, Azure, and Google Cloud. Its multi-cloud clusters enable seamless data distribution and automated failover between cloud providers, ensuring high availability and flexibility without added complexity.
    Learn More
  • 1
    Potpie

    Potpie

    Create custom engineering agents for your codebase

    Potpie is an AI-powered data analysis tool that automates the exploration and visualization of datasets, assisting users in uncovering insights without extensive coding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    nbmake

    nbmake

    Pytest plugin for testing notebooks

    Pytest plugin for testing and releasing notebook documentation. To raise the quality of scientific material through better automation. Research/Machine Learning Software Engineers who maintain packages/teaching materials with documentation written in notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LangKit

    LangKit

    An open-source toolkit for monitoring Language Learning Models (LLMs)

    LangKit is an open-source text metrics toolkit for monitoring language models. It offers an array of methods for extracting relevant signals from the input and/or output text, which are compatible with the open-source data logging library whylogs. Productionizing language models, including LLMs, comes with a range of risks due to the infinite amount of input combinations, which can elicit an infinite amount of outputs. The unstructured nature of text poses a challenge in the ML observability...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Powering the best of the internet | Fastly Icon
    Powering the best of the internet | Fastly

    Fastly's edge cloud platform delivers faster, safer, and more scalable sites and apps to customers.

    Ensure your websites, applications and services can effortlessly handle the demands of your users with Fastly. Fastly’s portfolio is designed to be highly performant, personalized and secure while seamlessly scaling to support your growth.
    Try for free
  • 5
    Optuna

    Optuna

    A hyperparameter optimization framework

    Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters. Optuna Dashboard is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Nixtla Neural Forecast

    Nixtla Neural Forecast

    Scalable and user friendly neural forecasting algorithms.

    NeuralForecast offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: MLP, LSTM, GRU, RNN, TCN, TimesNet, BiTCN, DeepAR, NBEATS, NBEATSx, NHITS, TiDE, DeepNPTS, TSMixer, TSMixerx, MLPMultivariate, DLinear, NLinear, TFT, Informer, AutoFormer, FedFormer, PatchTST, iTransformer, StemGNN, and TimeLLM. There is a shared belief in Neural forecasting methods'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Giskard

    Giskard

    Collaborative & Open-Source Quality Assurance for all AI models

    The testing framework dedicated to ML models, from tabular to LLMs. Giskard is an open-source testing framework dedicated to ML models, from tabular models to LLMs. Testing Machine Learning applications can be tedious. Since ML models depend on data, testing scenarios depend on the domain specificities and are often infinite. At Giskard, we believe that Machine Learning needs its own testing framework. Created by ML engineers for ML engineers, Giskard enables you to scan your model to find...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 10
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepKE

    DeepKE

    An Open Toolkit for Knowledge Graph Extraction and Construction

    Supporting cnSchema, standard supervised setting, low-resource setting, document-level setting and multi-modal setting for knowledge base population. DeepKE is a knowledge extraction toolkit supporting cnSchema, standard supervised, low-resource, and document-level scenarios for entity, relation, and attribution extraction. It allows developers and researchers to customize datasets and models to extract information from unstructured texts. DeepKE supports low-resource settings with only a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    High-Level Training Utilities Pytorch

    High-Level Training Utilities Pytorch

    High-level training, data augmentation, and utilities for Pytorch

    Contains significant improvements, bug fixes, and additional support. Get it from the releases, or pull the master branch. This package provides a few things. A high-level module for Keras-like training with callbacks, constraints, and regularizers. Comprehensive data augmentation, transforms, sampling, and loading. Utility tensor and variable functions so you don't need numpy as often. Have any feature requests? Submit an issue! I'll make it happen. Specifically, any data augmentation, data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    MMAction2

    MMAction2

    OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

    OpenMMLab's next generation video understanding toolbox and benchmark. MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. Modular design: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules. Support four major video understanding tasks: MMAction2 implements various algorithms for multiple video understanding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    MMEditing

    MMEditing

    MMEditing is a low-level vision toolbox based on PyTorch

    MMEditing is an open-source toolbox for low-level vision. It supports various tasks. MMEditing is a low-level vision toolbox based on PyTorch, supporting super-resolution, inpainting, matting, video interpolation, etc. We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules. The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MetaTransformer

    MetaTransformer

    Meta-Transformer for Unified Multimodal Learning

    We're thrilled to present OneLLM, an ensembling Meta-Transformer framework with Multimodal Large Language Models, which performs multimodal joint training, supports more modalities including fMRI, Depth, and Normal Maps, and demonstrates very impressive performances on 25 benchmarks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Otter-Grader

    Otter-Grader

    A Python and R autograding solution

    Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is designed to work with classes at any scale by abstracting away the autograding internals in a way that is compatible with any instructor's assignment distribution and collection pipeline. Otter supports local grading through parallel Docker containers, grading using the autograder platforms of 3rd party learning management systems (LMSs), the deployment...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Covalent workflow

    Covalent workflow

    Pythonic tool for running machine-learning/high performance workflows

    Covalent is a Pythonic workflow tool for computational scientists, AI/ML software engineers, and anyone who needs to run experiments on limited or expensive computing resources including quantum computers, HPC clusters, GPU arrays, and cloud services. Covalent enables a researcher to run computation tasks on an advanced hardware platform – such as a quantum computer or serverless HPC cluster – using a single line of code. Covalent overcomes computational and operational challenges inherent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    Towhee is an open-source machine-learning pipeline that helps you encode your unstructured data into embeddings. You can use our Python API to build a prototype of your pipeline and use Towhee to automatically optimize it for production-ready environments. From images to text to 3D molecular structures, Towhee supports data transformation for nearly 20 different unstructured data modalities. We provide end-to-end pipeline optimizations, covering everything from data decoding/encoding, to model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Unicorn

    Unicorn

    The magical reactive component framework for Django

    Quickly add in simple interactions to regular Django templates without learning a new templating language. Stop fighting with a new JavaScript build tool and separate process to use yet another frontend framework. Building a feature-rich API is complicated. Skip creating a bunch of serializers and just use Django. Unicorn progressively enhances a normal Django view, so the initial render of components is fast and great for SEO. The end result is that you can focus on writing regular Django...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Amazon Braket PennyLane Plugin

    Amazon Braket PennyLane Plugin

    A plugin for allowing Xanadu PennyLane to use Amazon Braket devices

    The Amazon Braket PennyLane plugin offers two Amazon Braket quantum devices to work with PennyLane. The Amazon Braket Python SDK is an open-source library that provides a framework to interact with quantum computing hardware devices and simulators through Amazon Braket. PennyLane is a machine learning library for optimization and automatic differentiation of hybrid quantum-classical computations. Once the Pennylane-Braket plugin is installed, the provided Braket devices can be accessed straight...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.