Search Results for "no code ai design" - Page 10

Showing 497 open source projects for "no code ai design"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Oasis

    Oasis

    Inference script for Oasis 500M

    Open-Oasis provides inference code and released weights for Oasis 500M, an interactive world model that generates gameplay frames conditioned on user keyboard input. Instead of rendering a pre-built game world, the system produces the next visual state via a diffusion-transformer approach, effectively “imagining” the world response to your actions in real time. The project focuses on enabling action-conditional frame generation so developers can experiment with interactive, model-generated...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Tiktoken

    Tiktoken

    tiktoken is a fast BPE tokeniser for use with OpenAI's models

    tiktoken is a high-performance, tokenizer library (based on byte-pair encoding, BPE) designed for use with OpenAI’s models. It handles encoding and decoding text to token IDs efficiently, with minimal overhead. Because tokenization is a fundamental step in preparing text for models, tiktoken is optimized for speed, memory, and correctness in model contexts (e.g. matching OpenAI’s internal tokenization). The repo supports multiple encodings (e.g. “cl100k_base”) and lets users switch encoding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyCaret

    PyCaret

    An open-source, low-code machine learning library in Python

    PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive. In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Step-Audio

    Step-Audio

    Open-source framework for intelligent speech interaction

    Step-Audio is a unified, open-source framework aimed at building intelligent speech systems that combine both comprehension and generation: it integrates large language models (LLMs) with speech input/output to handle not only semantic understanding but also rich vocal characteristics like tone, style, dialect, emotion, and prosody. The design moves beyond traditional separate-component pipelines (ASR → text model → TTS), instead offering a multimodal model that ingests speech or audio and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Playground Cheatsheet for Python

    Playground Cheatsheet for Python

    Playground and cheatsheet for learning Python

    learn-python is another repository by Oleksii Trekhleb that serves as both a playground and an interactive cheatsheet for learning Python. It contains numerous Python scripts organized by topic (lists, dictionaries, loops, functions, classes, modules, etc.), each with code examples, explanations, test assertions, and links to further readings. The design supports “learn by doing”: you can modify the code, run the tests, see how behavior changes, and thus internalize Python language features, idioms, and good style practices (including linting and PEP8). Because it is organized in bite-sized chunks, it’s ideal for beginners or people refreshing their Python skills who want to revisit syntax and common patterns before moving into larger frameworks or applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    VectorDB

    VectorDB

    A Python vector database you just need, no more, no less

    vectordb is a Pythonic vector database offers a comprehensive suite of CRUD (Create, Read, Update, Delete) operations and robust scalability options, including sharding and replication. It's readily deployable in a variety of environments, from local to on-premise and cloud. vectordb delivers exactly what you need - no more, no less. It's a testament to effective Pythonic design without over-engineering, making it a lean yet powerful solution for all your needs. vectordb capitalizes on the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    PaaSTA

    PaaSTA

    An open, distributed platform as a service

    PaaSTA is a highly-available, distributed system for building, deploying, and running services using containers and Kubernetes. PaaSTA has been running production services at Yelp since 2016. It was originally designed to run on top of Apache Mesos but has subsequently been updated to use Kubernetes. Over time the features and functionality that PaaSTA provides have increased but the principal design remains the same. PaaSTA aims to take a declarative description of the services that teams...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this framework helps you design and perform general deep learning experiments (WITHOUT coding) for reproducible deep learning studies. i.e., it enables you to train models without teachers simply by excluding teacher entries from a declarative yaml config file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Perceval

    Perceval

    An open source framework for programming photonic quantum computers

    An open-source framework for programming photonic quantum computers. Through a simple object-oriented Python API, Perceval provides tools for composing circuits from linear optical components, defining single-photon sources, manipulating Fock states, running simulations, reproducing published experimental papers and experimenting with a new generation of quantum algorithms. It aims to be a companion tool for developing photonic circuits – for simulating and optimizing their design, modeling...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Manim Python

    Manim Python

    Animation engine for explanatory math videos

    Manim is a Python library and animation engine designed for creating precise, programmatic mathematical visuals—famously used by 3Blue1Brown. It enables developers and educators to script animations using code and produce high-quality explanatory math videos.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Step1X-Edit

    Step1X-Edit

    A SOTA open-source image editing model

    Step1X-Edit is a state-of-the-art open-source image editing model/framework that uses a multimodal large language model (LLM) together with a diffusion-based image decoder to let users edit images simply via natural-language instructions plus a reference image. You supply an existing image and a textual command — e.g. “add a ruby pendant on the girl’s neck” or “make the background a sunset over mountains” — and the model interprets the instruction, computes a latent embedding combining the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Kubernetes Operator Pythonic Framework

    Kubernetes Operator Pythonic Framework

    A Python framework to write Kubernetes operators in just a few lines

    Kopf —Kubernetes Operator Pythonic Framework— is a framework and a library to make Kubernetes operator's development easier, just in a few lines of Python code. The main goal is to bring the Domain-Driven Design to the infrastructure level, with Kubernetes being an orchestrator/database of the domain objects (custom resources), and the operators containing the domain logic (with no or minimal infrastructure logic). The project was originally started as zalando-incubator/kopf in March 2019, and then forked as nolar/kopf in August 2020: but it is the same codebase, the same packages, the same developer(s). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Tunix

    Tunix

    A JAX-native LLM Post-Training Library

    Tunix is a JAX-native library for post-training large language models, bringing supervised fine-tuning, reinforcement learning–based alignment, and knowledge distillation into one coherent toolkit. It embraces JAX’s strengths—functional programming, jit compilation, and effortless multi-device execution—so experiments scale from a single GPU to pods of TPUs with minimal code changes. The library is organized around modular pipelines for data loading, rollout, optimization, and evaluation,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    README-AI

    README-AI

    README file generator, powered by AI

    README-AI is an automated documentation generator that creates structured README files for GitHub repositories using AI-powered analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    dude uncomplicated data extraction

    dude uncomplicated data extraction

    dude uncomplicated data extraction: A simple framework

    Dude is a very simple framework for writing web scrapers using Python decorators. The design, inspired by Flask, was to easily build a web scraper in just a few lines of code. Dude has an easy-to-learn syntax. Dude is currently in Pre-Alpha. Please expect breaking changes. You can run your scraper from terminal/shell/command-line by supplying URLs, the output filename of your choice and the paths to your python scripts to dude scrape command.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    The Falcon Web Framework

    The Falcon Web Framework

    The no-nonsense REST API and microservices framework

    ...When it comes to building HTTP APIs, other frameworks weigh you down with tons of dependencies and unnecessary abstractions. Falcon cuts to the chase with a clean design that embraces HTTP and the REST architectural style. Highly optimized, extensible code base. Easy access to headers and bodies through request and response objects. DRY request processing via middleware components and hooks. Strict adherence to RFCs. Idiomatic HTTP error responses. Straightforward exception handling. Snappy testing with WSGI/ASGI helpers and mocks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Scientific Visualization

    Scientific Visualization

    An open access book on scientific visualization using python

    The Scientific Visualization book is a freely available open-access textbook that introduces how to produce effective scientific visualizations using Python, focusing especially on leveraging the popular plotting library Matplotlib (and related tools). It goes beyond simple plotting tutorials and emphasizes design principles: how to choose colors, layout subplots, annotate graphs, and present data in a way that is both accurate and visually compelling. As such, it serves as a guide for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Perf Book

    Perf Book

    The book "Performance Analysis and Tuning on Modern CPU"

    This project is a practical guide to performance analysis and tuning on modern CPUs, bridging microarchitecture details with hands-on profiling. It explains how caches, TLBs, prefetchers, branch predictors, and out-of-order execution influence real program speed, then connects those concepts to concrete optimization strategies. Readers learn how to design trustworthy benchmarks, avoid measurement traps (warmup, turbo, frequency scaling), and interpret hardware performance counters. The book...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    fvcore

    fvcore

    Collection of common code shared among different research projects

    fvcore is a lightweight utility library that factors out common performance-minded components used across Facebook/Meta computer-vision codebases. It provides numerics and loss layers (e.g., focal loss, smooth-L1, IoU/GIoU) implemented for speed and clarity, along with initialization helpers and normalization layers for building PyTorch models. Its common modules include timers, logging, checkpoints, registry patterns, and configuration helpers that reduce boilerplate in research code. A...
    Downloads: 0 This Week
    Last Update:
    See Project