Showing 486 open source projects for "algorithms"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    SageMaker MXNet Training Toolkit

    SageMaker MXNet Training Toolkit

    Toolkit for running MXNet training scripts on SageMaker

    ...With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker compatible Docker containers, you can train and host models using these as well.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a detailed presentation of Stable Baselines in the Medium article. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    lzhw

    lzhw

    LZHW Windows command line lossless compression tool for tabular files

    LZHW Command Line Lossless Compression Tool is a Windows command line tool used to compress and decompress files from and to any form, csv, excel etc without any dependencies or installations. Using an optimized algorithm (LZHW) developed from Lempel-Ziv, Huffman and LZ-Welch algorithms. The tool can work in parallel and most of its code is written in Cython, so it is pretty fast. It is based on python lzhw library. Full tool documentation can be found at: https://mnoorfawi.github.io/lzhw/6%20Using%20the%20lzhw%20command%20line%20tool/ While the documentation for the python library is at: https://mnoorfawi.github.io/lzhw/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pytholog

    Pytholog

    A logic programming tool and a logical database with a RESTful API

    Pytholog Tool (Command line & API) An executable tool, built in python, that enables logic programming and prolog syntax through interactive shell that mimics prolog language and / or RESTful API that can be called from other applications. The tool is based on the python library pytholog which can be found here: https://github.com/mnoorfawi/pytholog The tool starts normally from the command line. Let's look at the arguments that can be specified while initiating the tool: $...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    Consistent Depth

    Consistent Depth

    We estimate dense, flicker-free, geometrically consistent depth

    Consistent Depth is a research project developed by Facebook Research that presents an algorithm for reconstructing dense and geometrically consistent depth information for all pixels in a monocular video. The system builds upon traditional structure-from-motion (SfM) techniques to provide geometric constraints while integrating a convolutional neural network trained for single-image depth estimation. During inference, the model fine-tunes itself to align with the geometric constraints of a...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    interactive-coding-challenges

    interactive-coding-challenges

    120+ interactive Python coding interview challenges

    Interactive Coding Challenges is a collection of practice problems designed to strengthen data structures, algorithms, and problem-solving skills. The repository emphasizes a learn-by-doing approach: you read a prompt, attempt a solution, and verify behavior with tests, often within notebooks or scripts. Problems span arrays, strings, stacks, queues, linked lists, trees, graphs, dynamic programming, and more, mirroring common interview themes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DeepCluster

    DeepCluster

    Deep Clustering for Unsupervised Learning of Visual Features

    DeepCluster is a classic self-supervised clustering-based representation learning algorithm that iteratively groups image features and uses the cluster assignments as pseudo-labels to train the network. In each round, features produced by the network are clustered (e.g. k-means), and the cluster IDs become supervision targets in the next epoch, encouraging the model to refine its representation to better separate semantic groups. This alternating “cluster & train” scheme helps the model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Higher

    Higher

    higher is a pytorch library

    ...It also provides differentiable implementations of common optimizers like SGD and Adam, making it possible to backpropagate through an arbitrary number of inner-loop optimization steps. By offering a clear and flexible interface, higher simplifies building complex learning algorithms that require gradient tracking across multiple update levels. Its design ensures compatibility with existing PyTorch models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    ...This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 10
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    iHome by ionware

    iHome by ionware

    iHome Smart Home System Platform

    iHome is a fully tested Smart Home Automation system using the Raspberry Pi Zero WiFi SBC and Linux OS and has all the functional features of NEST or ECOBEE smart thermostats with the added benefit of full privacy and security at less than half the price! It incorporates MBLogic with algorithms and Modbus coms for HVAC home control via the ionware modbus compatible ionC1 input/output controller board. The iHome software system comes fully configured as a SD Card image file for Raspberry Pi Zero wifi Plug and Play capability complete with MBLogic, Node-RED and MQTT already fully installed and ready to go. See wiki instructions to burn the SD Card image file, insert into your RPi Zero and Plug and Play. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    RL Baselines Zoo

    RL Baselines Zoo

    A collection of 100+ pre-trained RL agents using Stable Baselines

    RL Baselines Zoo is a comprehensive training framework and collection of pre-trained RL agents using Stable-Baselines3. It offers tools for training, tuning, and evaluating RL algorithms across many standard environments, including MuJoCo, Atari, and robotics simulations. Designed for reproducible RL research and benchmarking, it includes scripts, hyperparameter presets, and best practices for training robust agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    ...The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in NLP algorithms, neural architectures, and distributed machine learning systems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Baselines

    Baselines

    High-quality implementations of reinforcement learning algorithms

    Unlike the other two, openai/baselines is not currently a maintained or prominent repo in the OpenAI organization (and I found no strong reference in OpenAI’s main GitHub). Historically, “baselines” repositories are often used for baseline implementations of reinforcement learning algorithms or reference models (e.g. in the RL domain). If there was an OpenAI “baselines” repo, it might have contained reference implementations for reinforcement learning or model policy baselines to compare new work against. However, I couldn’t locate an active “openai/baselines” in the latest OpenAI repos, so it may have been archived, removed, or merged into other projects. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    ...At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the development of powerful AI technology. To ensure that AI is safe, we have to come up with safety strategies and algorithms that are compatible with this paradigm. As a result, we encourage everyone who asks this question to study these fields. However, while there are many resources to help people quickly ramp up on deep learning, deep reinforcement learning is more challenging to break into.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    FuzzyWuzzy

    FuzzyWuzzy

    Fuzzy string matching in Python

    We’ve made it our mission to pull in event tickets from every corner of the internet, showing you them all on the same screen so you can compare them and get to your game/concert/show as quickly as possible. Of course, a big problem with most corners of the internet is labeling. One of our most consistently frustrating issues is trying to figure out whether two ticket listings are for the same real-life event (that is, without enlisting the help of our army of interns). To pick an example...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    PBTK Optimizer

    Application for optimization of parameters in PBTK models

    ...When it is impractical to use these methods to estimate a parameter, techniques can be used to optimize parameters so that model results best fit validation data. This tool was designed to optimize a user-specified list of parameters to a user-specified PBTK model. The user also controls validation data and optimization algorithms. In addition to optimized parameters, the tool outputs statistical information about the fit of the optimized model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DEBay

    DEBay

    Deconvolutes qPCR data to estimate cell-type-specific gene expression

    DEBay: Deconvolution of Ensemble through Bayes-approach DEBay estimates cell type-specific gene expression by deconvolution of quantitative PCR data of a mixed population. It will be useful in experiments where the segregation of different cell types in a sample is arduous, but the proportion of different cell types in the sample can be measured. DEBay uses the population distribution data and the qPCR data to calculate the relative expression of the target gene in different cell types in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    RecNN

    RecNN

    Reinforced Recommendation toolkit built around pytorch 1.7

    ...It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    SMAC

    SMAC

    SMAC: The StarCraft Multi-Agent Challenge

    SMAC (StarCraft II Multi-Agent Challenge) is a benchmark environment for cooperative multi-agent reinforcement learning (MARL), based on real-time strategy (RTS) game scenarios in StarCraft II. It allows researchers to test algorithms where multiple units (agents) must collaborate to win battles against built-in game AI opponents. SMAC provides a controlled testbed for studying decentralized execution and centralized training paradigms in MARL.
    Downloads: 0 This Week
    Last Update:
    See Project