Showing 27 open source projects for "algorithms"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    Elementary Algorithms

    Elementary Algorithms

    Book of elementary algorithms and data structures

    This book introduces elementary algorithms and data structure. It includes side-by-side comparison of purely functional realization and their imperative counterpart. From 2020/12, I started re-writing this book. The PDF can be downloaded for preview (EN, 中文). The 1st edition in Chinese (中文) was published in 2017. I recently switched my focus to the Mathematics of programming, the new book is also available in (github).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Recommenders

    Recommenders

    Best practices on recommendation systems

    ...Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Open Source Vizier

    Open Source Vizier

    Python-based research interface for blackbox

    Open Source (OSS) Vizier is a Python-based interface for blackbox optimization and research, based on Google’s original internal Vizier, one of the first hyperparameter tuning services designed to work at scale. Allows a user to setup an OSS Vizier Server, which can host black-box optimization algorithms to serve multiple clients simultaneously in a fault-tolerant manner to tune their objective functions. Defines abstractions and utilities for implementing new optimization algorithms for research and to be hosted in the service. A wide collection of objective functions and methods to benchmark and compare algorithms. Define a problem statement and study configuration. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    ...Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human.
    Downloads: 8 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    DIG

    DIG

    A library for graph deep learning research

    ...If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Sudoku Maker is a generator for Sudoku number puzzles. It uses a genetic algorithm internally, so it can serve as an introduction to genetic algorithms. The generated Sudokus are usually very hard to solve -- good for getting rid of a Sudoku addiction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Binarytree

    Binarytree

    Python library for studying Binary Trees

    Binarytree is Python library that lets you generate, visualize, inspect and manipulate binary trees. Skip the tedious work of setting up test data, and dive straight into practicing algorithms. Heaps and BSTs (binary search trees) are also supported. Binarytree supports another representation which is more compact but without the indexing properties. Traverse trees using different algorithms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    Practice Python

    Practice Python

    Part of my daily plan for studying Python

    ...The tasks emphasize real coding over passive reading, nudging you to write, run, and iterate on solutions. Exercises commonly target strings, lists, dictionaries, control flow, functions, classes, and common algorithms, reinforcing idiomatic Python patterns. Many problems are intentionally minimal in boilerplate so you can concentrate on logic and clarity. The collection is well suited to daily practice sessions or warm-ups before tackling more complex projects. It is also friendly for learners returning to Python after time away, helping reacquire muscle memory through repetition.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Hybrid IT Automation Software and Solutions | Stonebranch Icon
    Hybrid IT Automation Software and Solutions | Stonebranch

    The Stonebranch Universal Automation Center is designed to help organizations automate, manage, and orchestrate their IT processes.

    Enterprise job scheduling software helps automate IT task as part of a daily system plan. This SaaS-based or on-premises solution initiates business processes and tasks at regular intervals. Learn what characteristics make it unique.
    Learn More
  • 10
    Gato (Graph Animation Toolbox): Animate graph algorithms for example for computing shortest paths, minimal spanning trees, maximum flows or maximal cardinality or weight matchings. Create your own animations using the Animated Data Structures (ADS).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    interactive-coding-challenges

    interactive-coding-challenges

    120+ interactive Python coding interview challenges

    Interactive Coding Challenges is a collection of practice problems designed to strengthen data structures, algorithms, and problem-solving skills. The repository emphasizes a learn-by-doing approach: you read a prompt, attempt a solution, and verify behavior with tests, often within notebooks or scripts. Problems span arrays, strings, stacks, queues, linked lists, trees, graphs, dynamic programming, and more, mirroring common interview themes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    ...At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the development of powerful AI technology. To ensure that AI is safe, we have to come up with safety strategies and algorithms that are compatible with this paradigm. As a result, we encourage everyone who asks this question to study these fields. However, while there are many resources to help people quickly ramp up on deep learning, deep reinforcement learning is more challenging to break into.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    A Machine Learning Course with Python

    A Machine Learning Course with Python

    A course about machine learning with Python

    ...In this project you will learn what is the definition of Machine Learning? When it started and what is the trending evolution? What are the Machine Learning categories and subcategories? What are the mostly used Machine Learning algorithms and how to implement them?
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Scikit-learn Tutorial

    Scikit-learn Tutorial

    An introductory tutorial for scikit-learn

    ...It provides a collection of notebooks that walk attendees from basic machine-learning concepts into practical modeling using the scikit-learn library. The tutorial covers data preparation, model fitting, evaluation, and common algorithms such as classification, regression, clustering, and dimensionality reduction. It is designed for people who already have a working Python environment and some familiarity with NumPy, SciPy, and Matplotlib. The repository specifies a clear list of dependencies so that participants can reproduce the environment used in the tutorial, and many downstream forks keep the content updated for newer versions of scikit-learn. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Learning to Learn in TensorFlow

    Learning to Learn in TensorFlow

    Learning to Learn in TensorFlow

    Learning to Learn, created by Google DeepMind, is an experimental framework that implements meta-learning—training neural networks to learn optimization strategies themselves rather than relying on manually designed algorithms like Adam or SGD. The repository provides code for training and evaluating learned optimizers that can generalize across different problem types, such as quadratic functions and image classification tasks (MNIST and CIFAR-10). Using TensorFlow, it defines a meta-optimizer model that learns by observing and adapting to the optimization trajectories of other models. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    TensorFlow World

    TensorFlow World

    Simple and ready-to-use tutorials for TensorFlow

    ...The question that should be asked is why has this repository been created when there are so many other tutorials about TensorFlow available on the web? Deep Learning is in very high interest these days - there's a crucial need for rapid and optimized implementations of the algorithms and architectures. TensorFlow is designed to facilitate this goal. The strong advantage of TensorFlow is it flexibility in designing highly modular models which can also be a disadvantage for beginners since a lot of the pieces must be considered together when creating the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    Cryptography Tools

    Classic & Modern Cryptography tools

    Cryptography Tools is a project to develop demonstration tools on classic (currently Caesar and Playfair) & modern crypto-systems, including private & public key encryptions, digital signatures, cryptographic hashes and authenticated encryption.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    The General Hidden Markov Model Library (GHMM) is a C library with additional Python bindings implementing a wide range of types of Hidden Markov Models and algorithms: discrete, continous emissions, basic training, HMM clustering, HMM mixtures.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    C++, Matlab and Python library for Hidden-state Conditional Random Fields. Implements 3 algorithms: LDCRF, HCRF and CRF. For Windows and Linux, 32- and 64-bits. Optimized for multi-threading. Works with sparse or dense input features.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    A collection of pure Python algorithms and data structures
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    This is a simple encryption tool to work with home-grown encryption algorithms. It can run as either a GUI, a command-line application, or a network proxy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    The project contains algorithms for locating the most central groups in complex networks. In particular implementations of various centrality measures and heuristic search algorithms. All functionality is exposed via XML-RPC for easier exploitation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Data processing algorithms based on the gnostical theory of uncertain data possess high robustness with respect to both outlying data and changes of their statistical characteristics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Automated computer program grading solutions designed for trainings on computer languages, data structures and algorithms. See http://openjudge.net for details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next