Object Detection Models for Windows

View 1456 business solutions

Browse free open source Object Detection Models and projects for Windows below. Use the toggles on the left to filter open source Object Detection Models by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 1
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert. Students love YOLOv5 for its simplicity and there are many quickstart examples for you to get started within seconds. Export and deploy your YOLOv5 model with just 1 line of code. There are also loads of quickstart guides and tutorials available to get your model where it needs to be. Create state of the art deep learning models with YOLOv5
    Downloads: 322 This Week
    Last Update:
    See Project
  • 2
    OpenPose

    OpenPose

    Real-time multi-person keypoint detection library for body, face, etc.

    OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facial, and foot keypoints (in total 135 keypoints) on single images. It is authored by Ginés Hidalgo, Zhe Cao, Tomas Simon, Shih-En Wei, Yaadhav Raaj, Hanbyul Joo, and Yaser Sheikh. It is maintained by Ginés Hidalgo and Yaadhav Raaj. OpenPose would not be possible without the CMU Panoptic Studio dataset. We would also like to thank all the people who has helped OpenPose in any way. 15, 18 or 25-keypoint body/foot keypoint estimation, including 6 foot keypoints. Runtime invariant to number of detected people. 2x21-keypoint hand keypoint estimation. Runtime depends on number of detected people. 70-keypoint face keypoint estimation. Runtime depends on number of detected people. Input: Image, video, webcam, Flir/Point Grey, IP camera, and support to add your own custom input source (e.g., depth camera).
    Downloads: 44 This Week
    Last Update:
    See Project
  • 3
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 183 This Week
    Last Update:
    See Project
  • 4
    Darknet YOLO

    Darknet YOLO

    Real-Time Object Detection for Windows and Linux

    This is YOLO-v3 and v2 for Windows and Linux. YOLO (You only look once) is a state-of-the-art, real-time object detection system of Darknet, an open source neural network framework in C. YOLO is extremely fast and accurate. It uses a single neural network to divide a full image into regions, and then predicts bounding boxes and probabilities for each region. This project is a fork of the original Darknet project.
    Downloads: 37 This Week
    Last Update:
    See Project
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • 5
    Frigate

    Frigate

    NVR with realtime local object detection for IP cameras

    Frigate - NVR With Realtime Object Detection for IP Cameras A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
    Downloads: 24 This Week
    Last Update:
    See Project
  • 6
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 7
    VoTT

    VoTT

    Visual Object Tagging Tool, an electron app for building models

    Visual Object Tagging Tool: An electron app for building end-to-end Object Detection Models from Images and Videos. An open source annotation and labeling tool for image and video assets. VoTT is a React + Redux Web application, written in TypeScript. This project was bootstrapped with Create React App. VoTT can be installed as a native application or run from source. VoTT is also available as a stand-alone Web application and can be used in any modern Web browser. VoTT is available for Windows, Linux and OSX. Download the appropriate platform package/installer from GitHub Releases. As noted above, the Web version of VoTT cannot access the local file system; all assets must be imported/exported through a Cloud project. VoTT V2 is a refactor and refresh of the original Electron-based application. As the usage and demand for VoTT grew, V2 was started as an initiative to improve and make VoTT more extensible and maintainable.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 8
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about 1 to 4. The library is tested regularly on MS Windows, Linux, and Mac OS X systems. No other packages are required to use the library, only APIs that are provided by an out of the box OS are needed. There is no installation or configure step needed before you can use the library. All operating system specific code is isolated inside the OS abstraction layers which are kept as small as possible.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 9
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. Multi-user labeling sign up and login, when you create an annotation it's tied to your account. Configurable label formats let you customize the visual interface to meet your specific labeling needs. Support for multiple data types including images, audio, text, HTML, time-series, and video.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Turn Your Content into Interactive Magic - For Free Icon
    Turn Your Content into Interactive Magic - For Free

    From Canva to Slides, Desmos to YouTube, Lumio works with the tech tools you are already using.

    Transform anything you share into an engaging digital experience - for free. Instantly convert your PDFs, slides, and files into dynamic, interactive sessions with built-in collaboration tools, activities, and real-time assessment. From teaching to training to team building, make every presentation unforgettable. Used by millions for education, business, and professional development.
    Start Free Forever
  • 10
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) Fast Server written in pure C++, a single codebase for Cloud, Desktop & Embedded.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Simd

    Simd

    High performance image processing library in C++

    The Simd Library is a free open source image processing library, designed for C and C++ programmers. It provides many useful high performance algorithms for image processing such as: pixel format conversion, image scaling and filtration, extraction of statistic information from images, motion detection, object detection (HAAR and LBP classifier cascades) and classification, neural network. The algorithms are optimized with using of different SIMD CPU extensions. In particular the library supports following CPU extensions: SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2 and AVX-512 for x86/x64, VMX(Altivec) and VSX(Power7) for PowerPC, NEON for ARM. The Simd Library has C API and also contains useful C++ classes and functions to facilitate access to C API. The library supports dynamic and static linking, 32-bit and 64-bit Windows, Android and Linux, MSVS, G++ and Clang compilers, MSVS project and CMake build systems.
    Leader badge
    Downloads: 22 This Week
    Last Update:
    See Project
  • 14
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful please give it a star and consider sponsoring it. You can also follow me on Twitter and LinkedIn where I aim to post frequent updates on my new discoveries, and I have created a dedicated group on LinkedIn. I have also started a blog here and have published a post on the history of this repository called Dissecting the satellite-image-deep-learning repo.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. DIGITS is completely interactive so that data scientists can focus on designing and training networks rather than programming and debugging. DIGITS is available as a free download to the members of the NVIDIA Developer Program. DIGITS is available on NVIDIA GPU Cloud (NGC) as an optimized container for on-demand usage. Sign-up for an NGC account and get started with DIGITS in minutes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    With ML.NET, you can create custom ML models using C# or F# without having to leave the .NET ecosystem. ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. All you have to do is load your data, and AutoML takes care of the rest of the model building process. ML.NET has been designed as an extensible platform so that you can consume other popular ML frameworks (TensorFlow, ONNX, Infer.NET, and more) and have access to even more machine learning scenarios, like image classification, object detection, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    TNN, a high-performance, lightweight neural network inference framework open sourced by Tencent Youtu Lab. It also has many outstanding advantages such as cross-platform, high performance, model compression, and code tailoring. The TNN framework further strengthens the support and performance optimization of mobile devices on the basis of the original Rapidnet and ncnn frameworks. At the same time, it refers to the high performance and good scalability characteristics of the industry's mainstream open source frameworks, and expands the support for X86 and NV GPUs. On the mobile phone, TNN has been used by many applications such as mobile QQ, weishi, and Pitu. As a basic acceleration framework for Tencent Cloud AI, TNN has provided acceleration support for the implementation of many businesses. Everyone is welcome to participate in the collaborative construction to promote the further improvement of the TNN inference framework.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7, 3.8. Also, x86_64 architecture, and at least 4 GB of RAM. We recommend using virtualenv to use, install, or build Turi Create. The package User Guide and API Docs contain more details on how to use Turi Create. If you want to build Turi Create from source, see BUILD.md. Turi Create does not require a GPU, but certain models can be accelerated 9-13x by utilizing a GPU.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Command Line Parser GetPot

    Command Line Parser GetPot

    Tool to parse the command line and configuration files.

    Powerful command line and configuration file parsing for C++, Python, Ruby and Java (others to come). This tool provides many features, such as separate treatment for options, variables, and flags, unrecognized object detection, prefixes and much more.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.