Object Detection Models for Mac

View 1568 business solutions

Browse free open source Object Detection Models and projects for Mac below. Use the toggles on the left to filter open source Object Detection Models by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    OpenPose

    OpenPose

    Real-time multi-person keypoint detection library for body, face, etc.

    OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facial, and foot keypoints (in total 135 keypoints) on single images. It is authored by Ginés Hidalgo, Zhe Cao, Tomas Simon, Shih-En Wei, Yaadhav Raaj, Hanbyul Joo, and Yaser Sheikh. It is maintained by Ginés Hidalgo and Yaadhav Raaj. OpenPose would not be possible without the CMU Panoptic Studio dataset. We would also like to thank all the people who has helped OpenPose in any way. 15, 18 or 25-keypoint body/foot keypoint estimation, including 6 foot keypoints. Runtime invariant to number of detected people. 2x21-keypoint hand keypoint estimation. Runtime depends on number of detected people. 70-keypoint face keypoint estimation. Runtime depends on number of detected people. Input: Image, video, webcam, Flir/Point Grey, IP camera, and support to add your own custom input source (e.g., depth camera).
    Downloads: 51 This Week
    Last Update:
    See Project
  • 2
    Frigate

    Frigate

    NVR with realtime local object detection for IP cameras

    Frigate - NVR With Realtime Object Detection for IP Cameras A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
    Downloads: 35 This Week
    Last Update:
    See Project
  • 3
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. Multi-user labeling sign up and login, when you create an annotation it's tied to your account. Configurable label formats let you customize the visual interface to meet your specific labeling needs. Support for multiple data types including images, audio, text, HTML, time-series, and video.
    Downloads: 30 This Week
    Last Update:
    See Project
  • 4
    VoTT

    VoTT

    Visual Object Tagging Tool, an electron app for building models

    Visual Object Tagging Tool: An electron app for building end-to-end Object Detection Models from Images and Videos. An open source annotation and labeling tool for image and video assets. VoTT is a React + Redux Web application, written in TypeScript. This project was bootstrapped with Create React App. VoTT can be installed as a native application or run from source. VoTT is also available as a stand-alone Web application and can be used in any modern Web browser. VoTT is available for Windows, Linux and OSX. Download the appropriate platform package/installer from GitHub Releases. As noted above, the Web version of VoTT cannot access the local file system; all assets must be imported/exported through a Cloud project. VoTT V2 is a refactor and refresh of the original Electron-based application. As the usage and demand for VoTT grew, V2 was started as an initiative to improve and make VoTT more extensible and maintainable.
    Downloads: 24 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 5
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 98 This Week
    Last Update:
    See Project
  • 6
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 21 This Week
    Last Update:
    See Project
  • 7
    Detectron2

    Detectron2

    Next-generation platform for object detection and segmentation

    Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark. It is powered by the PyTorch deep learning framework. Includes more features such as panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes, PointRend, DeepLab, etc. Can be used as a library to support different projects on top of it. We'll open source more research projects in this way. It trains much faster. Models can be exported to TorchScript format or Caffe2 format for deployment. With a new, more modular design, Detectron2 is flexible and extensible, and able to provide fast training on single or multiple GPU servers. Detectron2 includes high-quality implementations of state-of-the-art object detection.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about 1 to 4. The library is tested regularly on MS Windows, Linux, and Mac OS X systems. No other packages are required to use the library, only APIs that are provided by an out of the box OS are needed. There is no installation or configure step needed before you can use the library. All operating system specific code is isolated inside the OS abstraction layers which are kept as small as possible.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    COCO Annotator

    COCO Annotator

    Web-based image segmentation tool for object detection & localization

    COCO Annotator is a web-based image annotation tool designed for versatility and efficiently label images to create training data for image localization and object detection. It provides many distinct features including the ability to label an image segment (or part of a segment), track object instances, label objects with disconnected visible parts, and efficiently store and export annotations in the well-known COCO format. The annotation process is delivered through an intuitive and customizable interface and provides many tools for creating accurate datasets. Several annotation tools are currently available, with most applications as a desktop installation. Once installed, users can manually define regions in an image and creating a textual description. Generally, objects can be marked by a bounding box, either directly, through a masking tool, or by marking points to define the containing area. COCO Annotator allows users to annotate images using free-form curves.
    Downloads: 3 This Week
    Last Update:
    See Project
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 10
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Paper2GUI

    Paper2GUI

    Convert AI papers to GUI

    Convert AI papers to GUI,Make it easy and convenient for everyone to use artificial intelligence technology。让每个人都简单方便的使用前沿人工智能技术 Paper2GUI: An AI desktop APP toolbox for ordinary people. It can be used immediately without installation. It already supports 40+ AI models, covering AI painting, speech synthesis, video frame complementing, video super-resolution, object detection, and image stylization. , OCR recognition and other fields. Support Windows, Mac, Linux systems. Paper2GUI: 一款面向普通人的 AI 桌面 APP 工具箱,免安装即开即用,已支持 40+AI 模型,内容涵盖 AI 绘画、语音合成、视频补帧、视频超分、目标检测、图片风格化、OCR 识别等领域。支持 Windows、Mac、Linux 系统。
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. Ready to dive into deep learning? It only takes two days. We’ll provide you with all the tools you need, including easy to follow guides, software samples such as TensorRT code, and even pre-trained network models including ImageNet and DetectNet examples. Follow these directions to integrate deep learning into your platform of choice and quickly develop a proof-of-concept design.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. The output of a Raster Vision pipeline is a model bundle that allows you to easily utilize models in various deployment scenarios.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful please give it a star and consider sponsoring it. You can also follow me on Twitter and LinkedIn where I aim to post frequent updates on my new discoveries, and I have created a dedicated group on LinkedIn. I have also started a blog here and have published a post on the history of this repository called Dissecting the satellite-image-deep-learning repo.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    MobileNetV2

    MobileNetV2

    SSD-based object detection model trained on Open Images V4

    MobileNetV2 is a highly efficient and lightweight deep learning model designed for mobile and embedded devices. It is based on an inverted residual structure that allows for faster computation and fewer parameters, making it ideal for real-time applications on resource-constrained devices. MobileNetV2 is commonly used for image classification, object detection, and other computer vision tasks, achieving high accuracy while maintaining a small memory footprint. It also supports TensorFlow Lite for mobile device deployment, ensuring that developers can leverage its performance on a wide range of platforms.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    playqt

    playqt

    GUI version of ffplay for Windows

    playqt is a Windows GUI version of the well known ffplay program and has been enhanced with Object Detection capabilities. It can process multiple types of media including real time streams. An integrated camera control feature allows control over the camera parameters as well as automatic network configuration and connection. See the README under the files tab for configuration info. Real time object counting is implemented using YOLO detection algorithm. The program can be used with standard or customized models. A reduced version of the COCO dataset for most commonly observed types is available here. The program is based on ffplay and will respond to the familiar options if launched from the command line. This allows the program to be used with other command line tools such as youtube-dl. The source code is open and available here. It may be compiled using the contrib library provided along with Qt6, MSVC 2019 and NVIDIA cuda development library.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 18
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed to work in real-world applications like mobile apps, robotics, and other resource-constrained environments.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    LifeAI is an artificial intelligence system that can be applied to robotics, games, or business. It simulates key processes of our minds, such as organizing data into concepts and categories, planning actions based on their predicted outcome, and communication. LifeAI was designed to be simple, but powerful and flexible enough to have many applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Command Line Parser GetPot

    Command Line Parser GetPot

    Tool to parse the command line and configuration files.

    Powerful command line and configuration file parsing for C++, Python, Ruby and Java (others to come). This tool provides many features, such as separate treatment for options, variables, and flags, unrecognized object detection, prefixes and much more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can be used to easily index examples with list-like interfaces. Dataset classes whose names end with BboxDataset contain annotations of where objects locate in an image and which categories they are assigned to. These datasets can be indexed to return a tuple of an image, bounding boxes and labels. ChainerCV provides several network implementations that carry out object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Computer Vision Pretrained Models

    Computer Vision Pretrained Models

    A collection of computer vision pre-trained models

    A pre-trained model is a model created by someone else to solve a similar problem. Instead of building a model from scratch to solve a similar problem, we can use the model trained on other problem as a starting point. A pre-trained model may not be 100% accurate in your application. For example, if you want to build a self-learning car. You can spend years building a decent image recognition algorithm from scratch or you can take the inception model (a pre-trained model) from Google which was built on ImageNet data to identify images in those pictures. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone. TensorFlow implementation of 'YOLO: Real-Time Object Detection', with training and an actual support for real-time running on mobile devices. MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next