Open Source Linux Object Detection Models - Page 3

Object Detection Models for Linux

View 798 business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1

    ObjectDetector

    Car Detection,Face Detectiom,Object Detection

    Machine learning: This project is used for training new object like Car,Motor Cycle and so on and we use this model(xml file) for detecting in images.In this project we use viola jones algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Objectron

    Objectron

    A dataset of short, object-centric video clips

    The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists of 15K annotated video clips supplemented with over 4M annotated images in the following categories: bikes, books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. In addition, to ensure geo-diversity, our dataset is collected from 10 countries across five continents. Along with the dataset, we are also sharing a 3D object detection solution for four categories of objects — shoes, chairs, mugs, and cameras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyTracking

    PyTracking

    Visual tracking library based on PyTorch

    A general python framework for visual object tracking and video object segmentation, based on PyTorch. Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). Losses: BinaryFocalLoss, Focal, ReducedFocal, Lovasz, Jaccard and Dice losses, Wing Loss and more. Extras for Catalyst library (Visualization of batch predictions, additional metrics). By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    SOD

    SOD

    An Embedded Computer Vision & Machine Learning Library

    SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well as commercial products. SOD implements state-of-the-art computer vision algorithms found to be mandatory in real-world application areas. Sobel operator, Otsu's binarization and over 100 image/frame processing & analysis interfaces. Designed for computational efficiency and with a strong focus on real-time applications. SOD includes a comprehensive set of both classic and state-of-the-art deep-neural networks with their pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    This is an object recognition library written on top of OpenCV. Scalable Multimodal Object Recognition (SMORs) is designed for real time highly accurate object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    TNN, a high-performance, lightweight neural network inference framework open sourced by Tencent Youtu Lab. It also has many outstanding advantages such as cross-platform, high performance, model compression, and code tailoring. The TNN framework further strengthens the support and performance optimization of mobile devices on the basis of the original Rapidnet and ncnn frameworks. At the same time, it refers to the high performance and good scalability characteristics of the industry's mainstream open source frameworks, and expands the support for X86 and NV GPUs. On the mobile phone, TNN has been used by many applications such as mobile QQ, weishi, and Pitu. As a basic acceleration framework for Tencent Cloud AI, TNN has provided acceleration support for the implementation of many businesses. Everyone is welcome to participate in the collaborative construction to promote the further improvement of the TNN inference framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 10
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. T2T was developed by researchers and engineers in the Google Brain team and a community of users. It is now deprecated, we keep it running and welcome bug-fixes, but encourage users to use the successor library Trax.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the theory of transfer learning and show how to apply it in useful projects. The development is on progress! The API will be updated soon, the more talented and light-weight API will be available in this repo! Detailed API documentation and sample jupyter notebooks that explain basic usages of API will be added!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    UniVL

    UniVL

    Official implementation for UniVL video and language training models

    UniVL is a video-language pretrain model. It is designed with four modules and five objectives for both video language understanding and generation tasks. It is also a flexible model for most of the multimodal downstream tasks considering both efficiency and effectiveness.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    VOC-DPM

    VOC-DPM

    Object detection system using deformable part models (DPMs)

    The VOC-DPM repository is an implementation of an object detection system built on deformable part models (DPMs) and latent SVM learning, specifically packaged as “voc-release5.” It is the companion code for Ross Girshick’s dissertation, and extends earlier work on discriminatively trained DPMs. The system supports a grammar-based representation for object models, allowing structures such as mixtures and hierarchies to represent parts and whole objects. It implements both latent SVM training (where part assignments are treated as latent variables) and weak-label structural SVM (WL-SSVM) for learning from partially labeled data. The code integrates several enhancements: a star-cascade detection algorithm to speed up screening, context rescoring (re-ranking detections using contextual information), and various optimizations like in-memory training (rather than large on-disk data files).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    VoteNet

    VoteNet

    Deep Hough Voting for 3D Object Detection in Point Clouds

    VoteNet is a 3D object detection framework for point clouds that combines deep point set networks with a Hough voting mechanism to localize and classify objects in 3D space. It tackles the challenge that object centroids in 3D scenes often don’t lie on any input surface point by having each point “vote” for potential object centers; these votes are then clustered to propose object hypotheses. Once cluster centers are formed, the network regresses bounding boxes around them and classifies them. VoteNet works end-to-end: it learns the voting, aggregation, and bounding-box regression components jointly, enabling strong detection accuracy without relying on 2D proxies or voxelization. The codebase includes data preparation for indoor datasets (SUN RGB-D, ScanNet), training and evaluation scripts, and demo utilities to visualize predicted boxes over point clouds.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    YOLO ROS

    YOLO ROS

    YOLO ROS: Real-Time Object Detection for ROS

    This is a ROS package developed for object detection in camera images. You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package, you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. We also provide branches that work under ROS Melodic, ROS Foxy and ROS2. Darknet on the CPU is fast (approximately 1.5 seconds on an Intel Core i7-6700HQ CPU @ 2.60GHz × 8) but it's like 500 times faster on GPU! You'll have to have an Nvidia GPU and you'll have to install CUDA. The CMakeLists.txt file automatically detects if you have CUDA installed or not. CUDA is a parallel computing platform and application programming interface (API) model created by Nvidia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    c++ implement for Dala's doctoral thesis histogram of oriental gradient algorithm for object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    libsombrero

    Astronomical object/structure detection from 1D and 2D data sets.

    Sombrero is a fast wavelet image processing and object detection C library for astronomical images. Sombrero is named after the "Mexican Hat" shape of the wavelet masks used in image convolution and is released under the GNU LGPL library.
    Downloads: 0 This Week
    Last Update:
    See Project