Open Source Linux Object Detection Models - Page 2

Object Detection Models for Linux

View 802 business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Command Line Parser GetPot

    Command Line Parser GetPot

    Tool to parse the command line and configuration files.

    Powerful command line and configuration file parsing for C++, Python, Ruby and Java (others to come). This tool provides many features, such as separate treatment for options, variables, and flags, unrecognized object detection, prefixes and much more.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    MobileNetV2

    MobileNetV2

    SSD-based object detection model trained on Open Images V4

    MobileNetV2 is a highly efficient and lightweight deep learning model designed for mobile and embedded devices. It is based on an inverted residual structure that allows for faster computation and fewer parameters, making it ideal for real-time applications on resource-constrained devices. MobileNetV2 is commonly used for image classification, object detection, and other computer vision tasks, achieving high accuracy while maintaining a small memory footprint. It also supports TensorFlow Lite for mobile device deployment, ensuring that developers can leverage its performance on a wide range of platforms.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 3
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed to work in real-world applications like mobile apps, robotics, and other resource-constrained environments.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 5

    avio

    Python version of ffplay with built-in AI

    See the Files tab above for installation instructions
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    playqt

    playqt

    GUI version of ffplay for Windows

    playqt is a Windows GUI version of the well known ffplay program and has been enhanced with Object Detection capabilities. It can process multiple types of media including real time streams. An integrated camera control feature allows control over the camera parameters as well as automatic network configuration and connection. See the README under the files tab for configuration info. Real time object counting is implemented using YOLO detection algorithm. The program can be used with standard or customized models. A reduced version of the COCO dataset for most commonly observed types is available here. The program is based on ffplay and will respond to the familiar options if launched from the command line. This allows the program to be used with other command line tools such as youtube-dl. The source code is open and available here. It may be compiled using the contrib library provided along with Qt6, MSVC 2019 and NVIDIA cuda development library.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ChainerCV

    ChainerCV

    ChainerCV: a Library for Deep Learning in Computer Vision

    ChainerCV is a collection of tools to train and run neural networks for computer vision tasks using Chainer. In ChainerCV, we define the object detection task as a problem of, given an image, bounding box-based localization and categorization of objects. Bounding boxes in an image are represented as a two-dimensional array of shape (R,4), where R is the number of bounding boxes and the second axis corresponds to the coordinates of bounding boxes. ChainerCV supports dataset loaders, which can be used to easily index examples with list-like interfaces. Dataset classes whose names end with BboxDataset contain annotations of where objects locate in an image and which categories they are assigned to. These datasets can be indexed to return a tuple of an image, bounding boxes and labels. ChainerCV provides several network implementations that carry out object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    Computer Vision

    Computer Vision

    Best Practices, code samples, and documentation for Computer Vision

    In recent years, we've see an extra-ordinary growth in Computer Vision, with applications in face recognition, image understanding, search, drones, mapping, semi-autonomous and autonomous vehicles. A key part to many of these applications are visual recognition tasks such as image classification, object detection and image similarity. This repository provides examples and best practice guidelines for building computer vision systems. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in Computer Vision algorithms, neural architectures, and operationalizing such systems. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utility around loading image data, optimizing and evaluating models, and scaling up to the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Computer Vision Pretrained Models

    Computer Vision Pretrained Models

    A collection of computer vision pre-trained models

    A pre-trained model is a model created by someone else to solve a similar problem. Instead of building a model from scratch to solve a similar problem, we can use the model trained on other problem as a starting point. A pre-trained model may not be 100% accurate in your application. For example, if you want to build a self-learning car. You can spend years building a decent image recognition algorithm from scratch or you can take the inception model (a pre-trained model) from Google which was built on ImageNet data to identify images in those pictures. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone. TensorFlow implementation of 'YOLO: Real-Time Object Detection', with training and an actual support for real-time running on mobile devices. MobileNets trade off between latency, size and accuracy while comparing favorably with popular models from the literature.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. The README links papers and gives a high-level overview of components and expected outputs, with pointers to demos and assets. The repository is actively starred and structured as a typical research release with license, contribution guidelines, and security policy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DETR

    DETR

    End-to-end object detection with transformers

    PyTorch training code and pretrained models for DETR (DEtection TRansformer). We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Deep Learning course

    Deep Learning course

    Slides and Jupyter notebooks for the Deep Learning lectures

    Slides and Jupyter notebooks for the Deep Learning lectures at Master Year 2 Data Science from Institut Polytechnique de Paris. This course is being taught at as part of Master Year 2 Data Science IP-Paris. Note: press "P" to display the presenter's notes that include some comments and additional references. This lecture is built and maintained by Olivier Grisel and Charles Ollion.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DetectAndTrack

    DetectAndTrack

    The implementation of an algorithm presented in the CVPR18 paper

    DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in video. Although the repo has been archived and is now read-only, its issue tracker and artifacts remain useful for understanding implementation details and experimental settings. The project sits alongside other Facebook Research vision efforts, offering historical context for the evolution of video pose and tracking techniques. Researchers can still study the algorithms, adapt the pipeline, or port ideas into modern frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Detic

    Detic

    Code release for "Detecting Twenty-thousand Classes

    Detic (“Detecting Twenty-thousand Classes using Image-level Supervision”) is a large-vocabulary object detector that scales beyond fully annotated datasets by leveraging image-level labels. It decouples localization from classification, training a strong box localizer on standard detection data while learning classifiers from weak supervision and large image-tag corpora. A shared region proposal backbone feeds a flexible classification head that can expand to tens of thousands of categories without exhaustive box annotations. The system supports zero- or few-shot extension to novel categories via semantic embeddings and class name supervision, making “open-world” detection practical. Built on Detectron2, the repo includes configs, pretrained weights, and conversion tools to mix fully and weakly supervised sources. Detic is especially useful for applications where label space is vast and long-tailed, but dense bounding-box annotation is infeasible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    FastQR

    FastQR

    A Fast QR code detector for arbitrarily acquired images

    Applications of Quick Response (QR) codes enable rich context interaction through creation of links between physical objects and internet resources. In spite of the widespread use of this kind of barcode, applications for visually impaired people and robots are not common because existing decoders assume that the symbol is properly framed during image acquisition. This project implements a two-stage component-based approach to perform accurate detection of QR code symbols in arbitrarily acquired images. In the first stage a cascade classifier to detect parts of the symbol is trained using the rapid object detection framework proposed by Viola-Jones. In the second stage, detected patterns are aggregated in order to evaluate if they are spatially arranged in a way that is geometrically consistent with the components of a QR code symbol. OpenCV 2.2+ is required.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection, semantic segmentation and pose estimation, to instance segmentation and video action recognition. The model zoo is the one-stop shopping center for many models you are expecting. GluonCV embraces a flexible development pattern while is super easy to optimize and deploy without retaining a heavyweight deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    LibPaBOD

    LibPaBOD: a LIBrary for PArt-Based Object Detection in C++

    LibPaBOD is a library written in C++ that allows to perform object detection on still images. It implements the object detection method proposed by Felzenszwalb et al. in PAMI, 2010.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    LifeAI is an artificial intelligence system that can be applied to robotics, games, or business. It simulates key processes of our minds, such as organizing data into concepts and categories, planning actions based on their predicted outcome, and communication. LifeAI was designed to be simple, but powerful and flexible enough to have many applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MMDetection

    MMDetection

    An open source object detection toolbox based on PyTorch

    MMDetection is an open source object detection toolbox that's part of the OpenMMLab project developed by Multimedia Laboratory, CUHK. It stems from the codebase developed by the MMDet team, who won the COCO Detection Challenge in 2018. Since that win this toolbox has continuously been developed and improved. MMDetection detects various objects within a given image with high efficiency. Its training speed is comparable or even faster than those of other codebases like Detectron2 and SimpleDet. It supports multiple detection frameworks right out of the box, as well as various backbones and methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection - https://github.com/Tessellate-Imaging/Monk_Object_Detection. Monk object detection is our take on assembling state of the art object detection, image segmentation, pose estimation algorithms at one place, making them low code and easily configurable on any machine. - Monk GUI - https://github.com/Tessellate-Imaging/Monk_Gui. An interface over these low code tools for non coders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
     Object detection is usually a software-based monitoring algorithm that will signal, for example in the surveillance camera to begin capturing the event when it detects motion. In object tracking, the object is located and the moving object is followed. One of the fundamental steps in many computer based vision systems for object tracking and motion detection is real-time segmentation of moving regions in the image sequences. Segmentation is done in order to detect the object accurately. Usually cameras are used as input sensors, for recording.  Front end- MATLAB
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MultiPathNet

    MultiPathNet

    A Torch implementation of the object detection network

    MultiPathNet is a Torch-7 implementation of the “A MultiPath Network for Object Detection” paper (BMVC 2016), developed by Facebook AI Research. It extends the Fast R-CNN framework by introducing multiple network “paths” to enhance feature extraction and object recognition robustness. The MultiPath architecture incorporates skip connections and multi-scale processing to capture both fine-grained details and high-level context within a single detection pipeline. This results in improved detection accuracy across various object sizes and categories compared to standard single-path architectures. The repository supports training, evaluation, and visualization for object detection tasks on popular datasets such as PASCAL VOC and MS COCO. It provides pre-trained models for VGG, AlexNet, and ResNet backbones, along with integration for SharpMask and DeepMask proposal generators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    ObjectDetector

    Car Detection,Face Detectiom,Object Detection

    Machine learning: This project is used for training new object like Car,Motor Cycle and so on and we use this model(xml file) for detecting in images.In this project we use viola jones algorithm.
    Downloads: 0 This Week
    Last Update:
    See Project