11 projects for "artificial intelligence algorithm" with 2 filters applied:

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    Frigate

    Frigate

    NVR with realtime local object detection for IP cameras

    Frigate - NVR With Realtime Object Detection for IP Cameras A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
    Downloads: 54 This Week
    Last Update:
    See Project
  • 2
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Detic

    Detic

    Code release for "Detecting Twenty-thousand Classes

    Detic (“Detecting Twenty-thousand Classes using Image-level Supervision”) is a large-vocabulary object detector that scales beyond fully annotated datasets by leveraging image-level labels. It decouples localization from classification, training a strong box localizer on standard detection data while learning classifiers from weak supervision and large image-tag corpora. A shared region proposal backbone feeds a flexible classification head that can expand to tens of thousands of categories...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 115 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    MobileNetV2

    MobileNetV2

    SSD-based object detection model trained on Open Images V4

    MobileNetV2 is a highly efficient and lightweight deep learning model designed for mobile and embedded devices. It is based on an inverted residual structure that allows for faster computation and fewer parameters, making it ideal for real-time applications on resource-constrained devices. MobileNetV2 is commonly used for image classification, object detection, and other computer vision tasks, achieving high accuracy while maintaining a small memory footprint. It also supports TensorFlow...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 7
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    VoteNet

    VoteNet

    Deep Hough Voting for 3D Object Detection in Point Clouds

    VoteNet is a 3D object detection framework for point clouds that combines deep point set networks with a Hough voting mechanism to localize and classify objects in 3D space. It tackles the challenge that object centroids in 3D scenes often don’t lie on any input surface point by having each point “vote” for potential object centers; these votes are then clustered to propose object hypotheses. Once cluster centers are formed, the network regresses bounding boxes around them and classifies...
    Downloads: 2 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 10
    DetectAndTrack

    DetectAndTrack

    The implementation of an algorithm presented in the CVPR18 paper

    DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    Command Line Parser GetPot

    Command Line Parser GetPot

    Tool to parse the command line and configuration files.

    Powerful command line and configuration file parsing for C++, Python, Ruby and Java (others to come). This tool provides many features, such as separate treatment for options, variables, and flags, unrecognized object detection, prefixes and much more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.