Object Detection Models for BSD

Browse free open source Object Detection Models and projects for BSD below. Use the toggles on the left to filter open source Object Detection Models by OS, license, language, programming language, and project status.

  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • Peer to Peer Recognition Brings Teams Together Icon
    Peer to Peer Recognition Brings Teams Together

    The modern employee engagement platform for the modern workforce

    Create a positive and energetic workplace environment with Motivosity, an innovative employee recognition and engagement platform. With Motivosity, employees can give each other small monetary bonuses for doing great things, promoting trust, collaboration, and appreciation in the workplace. The software solution comes with features such as an open-currency open-reward system, insights and analytics, dynamic organization chart, award programs, milestones, and more.
    Learn More
  • 1
    Frigate

    Frigate

    NVR with realtime local object detection for IP cameras

    Frigate - NVR With Realtime Object Detection for IP Cameras A complete and local NVR designed for Home Assistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Use of a Google Coral Accelerator is optional, but highly recommended. The Coral will outperform even the best CPUs and can process 100+ FPS with very little overhead.
    Downloads: 31 This Week
    Last Update:
    See Project
  • 2
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 107 This Week
    Last Update:
    See Project
  • 3
    MobileNetV2

    MobileNetV2

    SSD-based object detection model trained on Open Images V4

    MobileNetV2 is a highly efficient and lightweight deep learning model designed for mobile and embedded devices. It is based on an inverted residual structure that allows for faster computation and fewer parameters, making it ideal for real-time applications on resource-constrained devices. MobileNetV2 is commonly used for image classification, object detection, and other computer vision tasks, achieving high accuracy while maintaining a small memory footprint. It also supports TensorFlow Lite for mobile device deployment, ensuring that developers can leverage its performance on a wide range of platforms.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    MediaPipe Face Detection

    MediaPipe Face Detection

    Detect faces in an image

    The MediaPipe Face Detection model is a high-performance, real-time face detection solution that uses machine learning to identify faces in images and video streams. It is optimized for mobile and embedded platforms, offering fast and accurate face detection while maintaining a small memory footprint. This model supports multiple face detections and is highly efficient, making it suitable for a variety of applications such as augmented reality, user authentication, and facial expression analysis.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Automate your business processes with ThinkAutomation Icon
    Automate your business processes with ThinkAutomation

    Parse, process and react to millions of messages - automatically

    Develop the automations that work for you. With ThinkAutomation, you get an open-ended studio to build any and every automated workflow you could ever need. All without volume limitations, and all without paying per process, license or ‘robot’.
    Learn More
  • 5
    MoveNet

    MoveNet

    A CNN model that predicts human joints from RGB images of a person

    The MoveNet model is an efficient, real-time human pose estimation system designed for detecting and tracking keypoints of human bodies. It utilizes deep learning to accurately locate 17 key points across the body, providing precise tracking even with fast movements. Optimized for mobile and embedded devices, MoveNet can be integrated into applications for fitness tracking, augmented reality, and interactive systems.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Blazeface

    Blazeface

    Blazeface is a lightweight model that detects faces in images

    Blazeface is a lightweight, high-performance face detection model designed for mobile and embedded devices, developed by TensorFlow. It is optimized for real-time face detection tasks and runs efficiently on mobile CPUs, ensuring minimal latency and power consumption. Blazeface is based on a fast architecture and uses deep learning techniques to detect faces with high accuracy, even in challenging conditions. It supports multiple face detection in varying lighting and poses, and is designed to work in real-world applications like mobile apps, robotics, and other resource-constrained environments.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Command Line Parser GetPot

    Command Line Parser GetPot

    Tool to parse the command line and configuration files.

    Powerful command line and configuration file parsing for C++, Python, Ruby and Java (others to come). This tool provides many features, such as separate treatment for options, variables, and flags, unrecognized object detection, prefixes and much more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. The README links papers and gives a high-level overview of components and expected outputs, with pointers to demos and assets. The repository is actively starred and structured as a typical research release with license, contribution guidelines, and security policy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DetectAndTrack

    DetectAndTrack

    The implementation of an algorithm presented in the CVPR18 paper

    DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in video. Although the repo has been archived and is now read-only, its issue tracker and artifacts remain useful for understanding implementation details and experimental settings. The project sits alongside other Facebook Research vision efforts, offering historical context for the evolution of video pose and tracking techniques. Researchers can still study the algorithms, adapt the pipeline, or port ideas into modern frameworks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Resco toolkit for building mobile apps Icon
    Resco toolkit for building mobile apps

    A no-code toolkit for building responsive and resilient mobile business applications for Microsoft Power Platform, Dynamics 365, Dataverse and Salesfo

    Deploying mobile apps with Resco takes days, not months—all without writing a single line of code. Workers can download the Resco app from AppStore, Google Play, or Windows Store, log into your company environment, and instantly use the app you have published on any device.
    Learn More
  • 10
    Detic

    Detic

    Code release for "Detecting Twenty-thousand Classes

    Detic (“Detecting Twenty-thousand Classes using Image-level Supervision”) is a large-vocabulary object detector that scales beyond fully annotated datasets by leveraging image-level labels. It decouples localization from classification, training a strong box localizer on standard detection data while learning classifiers from weak supervision and large image-tag corpora. A shared region proposal backbone feeds a flexible classification head that can expand to tens of thousands of categories without exhaustive box annotations. The system supports zero- or few-shot extension to novel categories via semantic embeddings and class name supervision, making “open-world” detection practical. Built on Detectron2, the repo includes configs, pretrained weights, and conversion tools to mix fully and weakly supervised sources. Detic is especially useful for applications where label space is vast and long-tailed, but dense bounding-box annotation is infeasible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    LibPaBOD

    LibPaBOD: a LIBrary for PArt-Based Object Detection in C++

    LibPaBOD is a library written in C++ that allows to perform object detection on still images. It implements the object detection method proposed by Felzenszwalb et al. in PAMI, 2010.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    This is an object recognition library written on top of OpenCV. Scalable Multimodal Object Recognition (SMORs) is designed for real time highly accurate object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    VoteNet

    VoteNet

    Deep Hough Voting for 3D Object Detection in Point Clouds

    VoteNet is a 3D object detection framework for point clouds that combines deep point set networks with a Hough voting mechanism to localize and classify objects in 3D space. It tackles the challenge that object centroids in 3D scenes often don’t lie on any input surface point by having each point “vote” for potential object centers; these votes are then clustered to propose object hypotheses. Once cluster centers are formed, the network regresses bounding boxes around them and classifies them. VoteNet works end-to-end: it learns the voting, aggregation, and bounding-box regression components jointly, enabling strong detection accuracy without relying on 2D proxies or voxelization. The codebase includes data preparation for indoor datasets (SUN RGB-D, ScanNet), training and evaluation scripts, and demo utilities to visualize predicted boxes over point clouds.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    libsombrero

    Astronomical object/structure detection from 1D and 2D data sets.

    Sombrero is a fast wavelet image processing and object detection C library for astronomical images. Sombrero is named after the "Mexican Hat" shape of the wavelet masks used in image convolution and is released under the GNU LGPL library.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next