Showing 3 open source projects for "java image segmentation"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 2
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 62 This Week
    Last Update:
    See Project
  • 3
    CRFasRNN

    CRFasRNN

    Semantic image segmentation method described in the ICCV 2015 paper

    CRF-RNN is a deep neural architecture that integrates fully connected Conditional Random Fields (CRFs) with Convolutional Neural Networks (CNNs) by reformulating mean-field CRF inference as a Recurrent Neural Network. This fusion enables end-to-end training via backpropagation for semantic image segmentation tasks, eliminating the need for separate, offline post-processing steps. Our work allows computers to recognize objects in images, what is distinctive about our work is that we also recover the 2D outline of objects. Currently we have trained this model to recognize 20 classes. This software allows you to test our algorithm on your own images – have a try and see if you can fool it, if you get some good examples you can send them to us. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next