Search Results for "java image segmentation"

Showing 1189 open source projects for "java image segmentation"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    Segmentation Models

    Segmentation Models

    Segmentation models with pretrained backbones. PyTorch

    Segmentation models with pre trained backbones. High-level API (just two lines to create a neural network) 9 models architectures for binary and multi class segmentation (including legendary Unet) 124 available encoders (and 500+ encoders from timm) All encoders have pre-trained weights for faster and better convergence. Popular metrics and losses for training routines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    labelme Image Polygonal Annotation

    labelme Image Polygonal Annotation

    Image polygonal annotation with Python

    Labelme is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Image annotation for polygon, rectangle, circle, line and point. Image flag annotation for classification and cleaning. Video annotation. (video annotation). GUI customization (predefined labels / flags, auto-saving, label validation, etc). Exporting VOC-format dataset for semantic/instance segmentation.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    SimpleITK

    SimpleITK

    A layer built on top of the Insight Toolkit (ITK)

    SimpleITK is an image analysis toolkit with a large number of components supporting general filtering operations, image segmentation and registration. It is built on top of the Insight Segmentation and Registration Toolkit ITK with the intent of providing a simplified interface to ITK. SimpleITK itself is written in C++ but is available for a large number of programming languages.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Qwen-Image

    Qwen-Image

    Qwen-Image is a powerful image generation foundation model

    ...The model excels not only in text rendering but also in a wide range of artistic styles, including photorealistic, impressionist, anime, and minimalist aesthetics. Qwen-Image supports sophisticated editing tasks such as style transfer, object insertion and removal, detail enhancement, and even human pose manipulation, making it suitable for both professional and casual users. It also includes advanced image understanding capabilities like object detection, semantic segmentation, depth and edge estimation, and novel view synthesis.
    Downloads: 18 This Week
    Last Update:
    See Project
  • Business Automation Software for SMBs Icon
    Business Automation Software for SMBs

    Fed up with not having the time, money and resources to grow your business?

    The only software you need to increase cash flow, optimize resource utilization, and take control of your assets and inventory.
    Learn More
  • 5
    ITK-SNAP is a tool for segmenting anatomical structures in medical images. It provides an automatic active contour segmentation pipeline, along with supporting manual segmentation toolbox. ITK-SNAP has a full-featured UI aimed at clinical researchers.
    Leader badge
    Downloads: 3,370 This Week
    Last Update:
    See Project
  • 6
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an...
    Downloads: 49 This Week
    Last Update:
    See Project
  • 7
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    ...The learned embeddings generalize robustly across tasks like classification, retrieval, and segmentation without fine-tuning, showing state-of-the-art transfer performance among self-supervised models.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    Segment Anything

    Segment Anything

    Provides code for running inference with the SegmentAnything Model

    Segment Anything (SAM) is a foundation model for image segmentation that’s designed to work “out of the box” on a wide variety of images without task-specific fine-tuning. It’s a promptable segmenter: you guide it with points, boxes, or rough masks, and it predicts high-quality object masks consistent with the prompt. The architecture separates a powerful image encoder from a lightweight mask decoder, so the heavy vision work can be computed once and the interactive part stays fast. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • 10
    CleanVision

    CleanVision

    Automatically find issues in image datasets

    ...The quality of machine learning models hinges on the quality of the data used to train them, but it is hard to manually identify all of the low-quality data in a big dataset. CleanVision helps you automatically identify common types of data issues lurking in image datasets. This package currently detects issues in the raw images themselves, making it a useful tool for any computer vision task such as: classification, segmentation, object detection, pose estimation, keypoint detection, generative modeling, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    The most flexible data annotation tool. Quickly installable. Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 12
    Pixelization

    Pixelization

    Stable-diffusion-webui-pixelization

    This is a specialized extension for the popular Stable Diffusion Web UI (AUTOMATIC1111) that focuses on converting or “pixelizing” images into a pixel-art aesthetic. It's designed as a plugin you install into the Web UI so that in the “Extras” or “Pixelization” tab you can drag in an input image and produce a stylized, block-based version with control over cell size, color depth, and segmentation. The extension uses pre-trained models and optionally can co-operate with the Web UI’s other features (image-to-image, prompt-based generation) so you can combine pixelization with generative workflows. For digital art, game assets, or retro aesthetic workflows, this offers a fast path from photo or high-res asset to stylized tiles or sprites. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time interactivity even on larger images or constrained hardware. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    BlenderProc

    BlenderProc

    Blender pipeline for photorealistic training image generation

    A procedural Blender pipeline for photorealistic training image generation. BlenderProc has to be run inside the blender python environment, as only there we can access the blender API. Therefore, instead of running your script with the usual python interpreter, the command line interface of BlenderProc has to be used. In general, one run of your script first loads or constructs a 3D scene, then sets some camera poses inside this scene and renders different types of images (RGB, distance, semantic segmentation, etc.) for each of those camera poses. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. Full Open Source, with an ecosystem of tools (API clients, video, annotation, ...) ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    AnLinux

    AnLinux

    AnLinux allow you to run Linux on Android without root access

    AnLinux allow you to run Linux on Android without root access. The bash script downloads the image over the internet, then decompresses the image, and then mounts it using PRoot.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 19
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research in multi-view 3D reconstruction, novel view synthesis, and geometry-aware representation learning. Each of the thousands of sequences in CO3Dv2 captures a common object (from categories like cars, chairs, or plants) from multiple real-world viewpoints. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    KonaBess

    KonaBess

    A GPU overclock & undervolt tool for various Snapdragon chips

    KonaBess is a straightforward application designed to customize GPU frequency and voltage tables without the need for kernel recompilation. The application achieves customization by unpacking the Boot/Vendor Boot image, decompiling and editing relevant dtb (device tree binary) files, and finally repacking and flashing the modified image. The extent of improvement varies, with some users reporting a 25% reduction in power consumption in the graphics benchmark (4.2w->3.2w) after undervolting...
    Downloads: 45 This Week
    Last Update:
    See Project
  • 21
    Metadata Extractor

    Metadata Extractor

    Extracts Exif, IPTC, XMP, ICC and other metadata from image and video

    metadata-extractor is a Java library for reading metadata from media files. The library understands several formats of metadata, many of which may be present in a single image.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 22
    supervision

    supervision

    We write your reusable computer vision tools

    We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DQO Data Quality Operations Center

    DQO Data Quality Operations Center

    Data Quality Operations Center

    DQO is an DataOps friendly data quality monitoring tool with customizable data quality checks and data quality dashboards. DQO comes with around 100 predefined data quality checks which helps you monitor the quality of your data. Table and column-level checks which allows writing your own SQL queries. Daily and monthly date partition testing. Data segmentation by up to 9 different data streams. Build-in scheduling. Calculation of data quality KPIs which can be displayed on multiple built-in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ncnn is a high-performance neural network inference computing framework designed specifically for mobile platforms. It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including...
    Downloads: 26 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next