Showing 55 open source projects for "machine learning python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Mathematics Dataset

    Mathematics Dataset

    This dataset code generates mathematical question and answer pairs

    ...The dataset enables models to learn mathematical problem-solving through examples that involve both numeric and symbolic reasoning. Version 1.0 includes over 2 million examples per category, with training splits labeled as “easy,” “medium,” and “hard,” supporting curriculum-based learning strategies. The data can be accessed via PyPI or generated locally using provided Python scripts, with outputs formatted for direct use in training or evaluation pipelines.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    PyMC

    PyMC

    Bayesian Modeling and Probabilistic Programming in Python

    PyMC is a Python library for probabilistic programming focused on Bayesian statistical modeling and machine learning. Built on top of computational tools like Aesara and NumPy, PyMC allows users to define models using intuitive syntax and perform inference using MCMC, variational inference, and other advanced algorithms. It’s widely used in scientific research, data science, and decision modeling.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Meet FuelCloud. The automated fuel management system of the future. Icon
    Meet FuelCloud. The automated fuel management system of the future.

    For construction companies, Landscapers, Transportation companies, Fleet managers, Fuel Jobbers,

    FuelCloud Fuel Management Systems solve the hardest problems with monitoring and managing your bulk fuel supplies. Protect your bulk fuel from loss and theft, control who can get fuel from anywhere, and automate the reports and data transfers you need to run your business more efficiently than ever.
    Learn More
  • 5
    JAX

    JAX

    Composable transformations of Python+NumPy programs

    With its updated version of Autograd, JAX can automatically differentiate native Python and NumPy functions. It can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order. What’s new is that JAX uses XLA to compile and run your NumPy programs on GPUs and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. These thread-wide, warp-wide, block-wide, and device-wide...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Swift Numerics

    Swift Numerics

    Advanced mathematical types and functions for Swift

    ...The modules are factored to keep dependencies minimal and to allow adopters to pull in only what they need. As a result, Swift Numerics underpins higher-level libraries in simulation, signal processing, and machine learning written in pure Swift.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,479 This Week
    Last Update:
    See Project
  • 9
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. Is is...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Point Of Sale Software for SMBs | Bravo Icon
    Point Of Sale Software for SMBs | Bravo

    Simplify Business with All In One Point of Sale for Specialty Retailers

    Bravo is changing the point of sale software game for small business specialty retailers with our easy to use, all in one solution. Say goodbye to working in multiple systems. Say hello to Bravo.
    Learn More
  • 10
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 4 This Week
    Last Update:
    See Project
  • 11

    DataPrep

    Python-based data preprocessing tool

    DataPrep v0.2 is a Tkinter-based GUI application/tool designed to assist users in data preprocessing, multicollinearity removal, and feature selection for a wide range of applications in Cheminformatics, Bioinformatics, Data Analysis, Feature Selection, Molecular Modeling, Machine Learning, and Quantitative-structure-property relationship (QSPR) studies. It includes functionality to load, process, and save datasets with support for different preprocessing & multicollinearity removal strategies with customizable parameter setting options.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    UnBBayes

    UnBBayes

    Framework & GUI for Bayes Nets and other probabilistic models.

    UnBBayes is a probabilistic network framework written in Java. It has both a GUI and an API with inference, sampling, learning and evaluation. It supports Bayesian networks, influence diagrams, MSBN, OOBN, HBN, MEBN/PR-OWL, PRM, structure, parameter and incremental learning. Please, visit our wiki (https://sourceforge.net/p/unbbayes/wiki/Home/) for more information. Check out the license section (https://sourceforge.net/p/unbbayes/wiki/License/) for our licensing policy.
    Leader badge
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    stkpp

    stkpp

    C++ Statistical ToolKit

    STK++ (http://www.stkpp.org) is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen-like API), regression, dimension reduction, etc. Some functionalities provided by the library are available in the R environment as R functions (http://cran.at.r-project.org/web/packages/rtkore/index.html). At a convenience, we propose the source packages on sourceforge. The library offers a dense set of (mostly) template...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NZMATH

    NZMATH

    Python Calculator on Number Theory, three-birds-one learning material

    NZMATH is a Python calculator on number theory. It is freely available and distributed under the BSD license. All programs are written only by Python so that you can easily see their algorithmic number theory. You can get NZMATH with a single command: % python -m pip install -U nzmath Here % is the command line prompt of Windows or Unix/macOS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    STK

    STK

    a Small (Matlab/Octave) Toolbox for Kriging

    ...Even though it is, currently, mostly geared towards the Design and Analysis of Computer Experiments (DACE), the STK can be useful for other applications areas (such as Geostatistics, Machine Learning, Non-parametric Regression, etc.).
    Downloads: 16 This Week
    Last Update:
    See Project
  • 16
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    rpackage conjurer

    Synthetic data generation using R

    Builds synthetic data applicable across multiple domains. This package also provides flexibility to control data distribution to make it relevant to many industry examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    Root Phenotyping Suite

    Three different software tools for phenotyping plant root images

    RootAnalyzer is a fully automated tool, for efficiently extracting and analyzing anatomical traits from root-cross section images. RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and metaxylem, and produces statistics about the morphological properties of the root cells and tissues. RTipC is a system for the fully automated detection and classification of root tips in root images obtained either by 2d flat bed...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Awesome Math

    Awesome Math

    This is the Curriculum for "How to Learn Mathematics Fast"

    This repository is a curated roadmap for learning the core mathematics used in computer science, machine learning, and data science without getting lost in unnecessary detours. It organizes topics like algebra, calculus, linear algebra, probability, and statistics into a pragmatic sequence that favors intuition and problem-solving over purely formal proofs. The materials emphasize short, high-leverage resources—video lectures, concise notes, and hands-on exercises—that help you build momentum quickly. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21

    fantail-mlkit

    The fantail machine learning toolkit (Moved)

    Moved to https://github.com/quansun/fantail-ml
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    VBS for Research on the Internet

    VBS for Research on the Internet

    Welcome to the Volunteer-Based System for Research on the Internet!

    ...This information can be used for: - obtaining the knowledge which applications are most frequently used in the network - providing the users some basic statistics about their Internet connection usage (for example for which kinds of applications their connection is used the most) - creating scientific profiles of traffic generated by different applications or different groups of applications - creating a traffic generator, to imitate traffic generated by particular applications, or to imitate the real traffic in the network - implementing smart assessment of QoS in the network at the users' level and in the core of the network - obtaining precise data needed to train Machine Learning Algorithms - many more cases :-)
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    All future developments will be implemented in the new MATLAB toolbox SciXMiner, please visit https://sourceforge.net/projects/scixminer/ to download the newest version. The former Matlab toolbox Gait-CAD was designed for the visualization and analysis of time series and features with a special focus to data mining problems including classification, regression, and clustering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Etchimaths(A'LEVEL)

    Etchimaths(A'LEVEL)

    Etchimaths(A'LEVEL) is a typical Mathematics software for A'LEVEL

    Etchimaths(A'LEVEL) is a Mathematics software, a helping tool for Mathematics simulation(solving) and study for the GCE ADVANCED LEVEL standard.It is a solving machine as well as a teaching machine
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Modular toolkit for Data Processing MDP
    The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next