Showing 78 open source projects for "machine learning python"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Mathematics Dataset

    Mathematics Dataset

    This dataset code generates mathematical question and answer pairs

    ...The dataset enables models to learn mathematical problem-solving through examples that involve both numeric and symbolic reasoning. Version 1.0 includes over 2 million examples per category, with training splits labeled as “easy,” “medium,” and “hard,” supporting curriculum-based learning strategies. The data can be accessed via PyPI or generated locally using provided Python scripts, with outputs formatted for direct use in training or evaluation pipelines.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    PyMC

    PyMC

    Bayesian Modeling and Probabilistic Programming in Python

    PyMC is a Python library for probabilistic programming focused on Bayesian statistical modeling and machine learning. Built on top of computational tools like Aesara and NumPy, PyMC allows users to define models using intuitive syntax and perform inference using MCMC, variational inference, and other advanced algorithms. It’s widely used in scientific research, data science, and decision modeling.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 5
    JAX

    JAX

    Composable transformations of Python+NumPy programs

    With its updated version of Autograd, JAX can automatically differentiate native Python and NumPy functions. It can differentiate through loops, branches, recursion, and closures, and it can take derivatives of derivatives of derivatives. It supports reverse-mode differentiation (a.k.a. backpropagation) via grad as well as forward-mode differentiation, and the two can be composed arbitrarily to any order. What’s new is that JAX uses XLA to compile and run your NumPy programs on GPUs and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. These thread-wide, warp-wide, block-wide, and device-wide...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Swift Numerics

    Swift Numerics

    Advanced mathematical types and functions for Swift

    ...The modules are factored to keep dependencies minimal and to allow adopters to pull in only what they need. As a result, Swift Numerics underpins higher-level libraries in simulation, signal processing, and machine learning written in pure Swift.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    alphageometry

    alphageometry

    AI-driven neuro-symbolic solver for high-school geometry problems

    AlphaGeometry, developed by Google DeepMind, is a theorem-proving system that combines symbolic reasoning with deep learning to solve challenging geometry problems, such as those found in mathematical Olympiads. The repository provides the full implementation of DDAR (Deductive Difference and Abductive Reasoning) and AlphaGeometry, two automated geometry solvers described in the 2024 Nature paper “Solving Olympiad Geometry without Human Demonstrations.” AlphaGeometry integrates a symbolic...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 9
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,269 This Week
    Last Update:
    See Project
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 10
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. Is is...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12

    DataPrep

    Python-based data preprocessing tool

    DataPrep v0.2 is a Tkinter-based GUI application/tool designed to assist users in data preprocessing, multicollinearity removal, and feature selection for a wide range of applications in Cheminformatics, Bioinformatics, Data Analysis, Feature Selection, Molecular Modeling, Machine Learning, and Quantitative-structure-property relationship (QSPR) studies. It includes functionality to load, process, and save datasets with support for different preprocessing & multicollinearity removal strategies with customizable parameter setting options.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    dibnn

    dibnn

    Drop In the Bucket Neural Networks

    One more lightweight neural network in C.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    UnBBayes

    UnBBayes

    Framework & GUI for Bayes Nets and other probabilistic models.

    UnBBayes is a probabilistic network framework written in Java. It has both a GUI and an API with inference, sampling, learning and evaluation. It supports Bayesian networks, influence diagrams, MSBN, OOBN, HBN, MEBN/PR-OWL, PRM, structure, parameter and incremental learning. Please, visit our wiki (https://sourceforge.net/p/unbbayes/wiki/Home/) for more information. Check out the license section (https://sourceforge.net/p/unbbayes/wiki/License/) for our licensing policy.
    Leader badge
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    stkpp

    stkpp

    C++ Statistical ToolKit

    STK++ (http://www.stkpp.org) is a versatile, fast, reliable and elegant collection of C++ classes for statistics, clustering, linear algebra, arrays (with an Eigen-like API), regression, dimension reduction, etc. Some functionalities provided by the library are available in the R environment as R functions (http://cran.at.r-project.org/web/packages/rtkore/index.html). At a convenience, we propose the source packages on sourceforge. The library offers a dense set of (mostly) template...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NZMATH

    NZMATH

    Python Calculator on Number Theory, three-birds-one learning material

    NZMATH is a Python calculator on number theory. It is freely available and distributed under the BSD license. All programs are written only by Python so that you can easily see their algorithmic number theory. You can get NZMATH with a single command: % python -m pip install -U nzmath Here % is the command line prompt of Windows or Unix/macOS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    STK

    STK

    a Small (Matlab/Octave) Toolbox for Kriging

    ...Even though it is, currently, mostly geared towards the Design and Analysis of Computer Experiments (DACE), the STK can be useful for other applications areas (such as Geostatistics, Machine Learning, Non-parametric Regression, etc.).
    Downloads: 12 This Week
    Last Update:
    See Project
  • 18
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    The main goal of this project is to develop new algorithms of machine learning and collect examples of existing methods. This collection pursues scientific and educational purposes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    rpackage conjurer

    Synthetic data generation using R

    Builds synthetic data applicable across multiple domains. This package also provides flexibility to control data distribution to make it relevant to many industry examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21

    Root Phenotyping Suite

    Three different software tools for phenotyping plant root images

    RootAnalyzer is a fully automated tool, for efficiently extracting and analyzing anatomical traits from root-cross section images. RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and metaxylem, and produces statistics about the morphological properties of the root cells and tissues. RTipC is a system for the fully automated detection and classification of root tips in root images obtained either by 2d flat bed...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Awesome Math

    Awesome Math

    This is the Curriculum for "How to Learn Mathematics Fast"

    This repository is a curated roadmap for learning the core mathematics used in computer science, machine learning, and data science without getting lost in unnecessary detours. It organizes topics like algebra, calculus, linear algebra, probability, and statistics into a pragmatic sequence that favors intuition and problem-solving over purely formal proofs. The materials emphasize short, high-leverage resources—video lectures, concise notes, and hands-on exercises—that help you build momentum quickly. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    Tsf_Mdnnhn

    Time Series Forecasting.

    Implementation of algorithm allowing Time Series Forecasting.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    fantail-mlkit

    The fantail machine learning toolkit (Moved)

    Moved to https://github.com/quansun/fantail-ml
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next