Showing 553 open source projects for "raspberry-gpio-python"

View related business solutions
  • Get Avast Free Antivirus | Your top-rated shield against malware and online scams Icon
    Get Avast Free Antivirus | Your top-rated shield against malware and online scams

    Boost your PC's defense against cyberthreats and web-based scams.

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a unified...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 2
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I have...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 4
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 10 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 6
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 7
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 8
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 9
    Porcupine

    Porcupine

    On-device wake word detection powered by deep learning

    Build always-listening yet private voice applications. Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is using deep neural networks trained in real-world environments. Compact and computationally-efficient. It is perfect for IoT. Cross-platform. Arm Cortex-M, STM32, PSoC, Arduino, and i.MX RT. Raspberry Pi, NVIDIA Jetson Nano, and BeagleBone. Android and iOS. Chrome, Safari, Firefox, and Edge. Linux (x86_64...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Build apps or websites quickly on a fully managed platform Icon
    Build apps or websites quickly on a fully managed platform

    Get two million requests free per month.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure.
    Try it for free
  • 10
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 11
    Scanpy

    Scanpy

    Single-cell analysis in Python

    Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 12
    RAGFlow

    RAGFlow

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine

    RAGFlow is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 13
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 14
    tslearn

    tslearn

    The machine learning toolkit for time series analysis in Python

    The machine learning toolkit for time series analysis in Python. tslearn expects a time series dataset to be formatted as a 3D numpy array. The three dimensions correspond to the number of time series, the number of measurements per time series and the number of dimensions respectively (n_ts, max_sz, d). In order to get the data in the right format.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 15
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 16
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 17
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 18
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 19
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    SpeechBrain is an open-source and all-in-one conversational AI toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed in a...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 20
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 21
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 22
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    This is a C++ analytical library designed for data analysis similar to libraries in Python and R. For example, you would compare this to Pandas, R data.frame, or Polars. You can slice the data in many different ways. You can join, merge, and group-by the data. You can run various statistical, summarization, financial, and ML algorithms on the data. You can add your custom algorithms easily. You can multi-column sort, custom pick, and delete the data. DataFrame also includes a large collection...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 23
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 24
    gensim

    gensim

    Topic Modelling for Humans

    Gensim is a Python library for topic modeling, document indexing, and similarity retrieval with large corpora. The target audience is the natural language processing (NLP) and information retrieval (IR) community.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 25
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 8 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.