Showing 563 open source projects for "python q learning"

View related business solutions
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud. Icon
    Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud.

    Power faster innovation with Teradata VantageCloud

    VantageCloud is the complete cloud analytics and data platform, delivering harmonized data and Trusted AI for all. Built for performance, flexibility, and openness, VantageCloud enables organizations to unify diverse data sources, run complex analytics, and deploy AI models—all within a single, scalable platform.
    Learn More
  • 1
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 5
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    OmicSelector is an environment, Docker-based web application, and R package for biomarker signature selection (feature selection) from high-throughput experiments and others. It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Bullet Physics SDK

    Bullet Physics SDK

    Real-time collision detection and multi-physics simulation for VR

    ...In addition, the simulator can be entirely run on CUDA for fast rollouts, in combination with Augmented Random Search. This allows for 1 million simulation steps per second. It is highly recommended to use PyBullet Python bindings for improved support for robotics, reinforcement learning and VR. Use pip install pybullet and checkout the PyBullet Quickstart Guide.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 7
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    GFPGAN

    GFPGAN

    GFPGAN aims at developing Practical Algorithms

    GFPGAN aims at developing Practical Algorithms for Real-world Face Restoration. Colab Demo for GFPGAN; (Another Colab Demo for the original paper model) Online demo: Huggingface (return only the cropped face) Online demo: Replicate.ai (may need to sign in, return the whole image). Online demo: Baseten.co (backed by GPU, returns the whole image). We provide a clean version of GFPGAN, which can run without CUDA extensions. So that it can run in Windows or on CPU mode. GFPGAN aims at developing...
    Downloads: 57 This Week
    Last Update:
    See Project
  • 9
    KoboldAI

    KoboldAI

    Your gateway to GPT writing

    This is a browser-based front-end for AI-assisted writing with multiple local & remote AI models. It offers the standard array of tools, including Memory, Author's Note, World Info, Save & Load, adjustable AI settings, formatting options, and the ability to import existing AI Dungeon adventures. You can also turn on Adventure mode and play the game like AI Dungeon Unleashed. Stories can be played like a Novel, a text adventure game or used as a chatbot with an easy toggles to change...
    Leader badge
    Downloads: 221 This Week
    Last Update:
    See Project
  • Easy-to-use Business Software for the Waste Management Software Industry Icon
    Easy-to-use Business Software for the Waste Management Software Industry

    Increase efficiency, expedite accounts receivables, optimize routes, acquire new customers, & more!

    DOP Software’s mission is to streamline waste and recycling business’ processes by providing them with dynamic, comprehensive software and services that increase productivity and quality of performance.
    Learn More
  • 10
    Elephas

    Elephas

    Distributed Deep learning with Keras & Spark

    Elephas is an extension of Keras, which allows you to run distributed deep learning models at scale with Spark. Elephas currently supports a number of applications. Elephas brings deep learning with Keras to Spark. Elephas intends to keep the simplicity and high usability of Keras, thereby allowing for fast prototyping of distributed models, which can be run on massive data sets. Elephas implements a class of data-parallel algorithms on top of Keras, using Spark's RDDs and data frames. Keras...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PyTorch Transfer-Learning-Library

    PyTorch Transfer-Learning-Library

    Transfer Learning Library for Domain Adaptation, Task Adaptation, etc.

    TLlib is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms or readily apply existing algorithms. We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Yellowbrick

    Yellowbrick

    Visual analysis and diagnostic tools to facilitate ML selection

    Yellowbrick extends the Scikit-Learn API to make model selection and hyperparameter tuning easier. Under the hood, it’s using Matplotlib. Yellowbrick is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, another trend in AutoML is to focus on neural architecture search. To bring the best of these two worlds together, we developed Auto-PyTorch, which jointly and robustly optimizes the network architecture and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train your own DNN models onboard Jetson with PyTorch. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Chainer

    Chainer

    A flexible deep learning framework

    Chainer is a Python-based deep learning framework. It provides automatic differentiation APIs based on dynamic computational graphs as well as high-level APIs for neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    KAIR

    KAIR

    Image Restoration Toolbox (PyTorch). Training and testing codes

    Image restoration toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSR/GAN, SwinIR.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 18
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    This page will introduce the general concept of point clouds and illustrate the capabilities of pyntcloud as a point cloud processing tool. Point clouds are one of the most relevant entities for representing three dimensional data these days, along with polygonal meshes (which are just a special case of point clouds with connectivity graph attached). In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Alphafold2

    Alphafold2

    Unofficial Pytorch implementation / replication of Alphafold2

    To eventually become an unofficial working Pytorch implementation of Alphafold2, the breathtaking attention network that solved CASP14. Will be gradually implemented as more details of the architecture is released. Once this is replicated, I intend to fold all available amino acid sequences out there in-silico and release it as an academic torrent, to further science. Deepmind has open sourced the official code in Jax, along with the weights! This repository will now be geared towards a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    pyprobml

    pyprobml

    Python code for "Probabilistic Machine learning" book by Kevin Murphy

    Python 3 code to reproduce the figures in the books Probabilistic Machine Learning: An Introduction (aka "book 1") and Probabilistic Machine Learning: Advanced Topics (aka "book 2"). The code uses the standard Python libraries, such as numpy, scipy, matplotlib, sklearn, etc. Some of the code (especially in book 2) also uses JAX, and in some parts of book 1, we also use Tensorflow 2 and a little bit of Torch.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    ...Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    gplearn

    gplearn

    Genetic Programming in Python, with a scikit-learn inspired API

    gplearn implements Genetic Programming in Python, with a scikit-learn-inspired and compatible API. While Genetic Programming (GP) can be used to perform a very wide variety of tasks, gplearn is purposefully constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful estimators that are straightforward to implement. Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that best describes a relationship. ...
    Downloads: 2 This Week
    Last Update:
    See Project