Showing 92 open source projects for "java-ml"

View related business solutions
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • Macaw Insurance Agency Software Icon
    Macaw Insurance Agency Software

    Macaw AMS is for selling Insurance. Brokers, MGAs, MGUs, Program Managers and Lloyds Coverholders can use Macaw AMS to automate their operating model.

    Nest Innovative Solutions has a great mix of insurance industry knowledge, technology, project management and ability to implement change quickly that made vendor selection a very simple process for our MGA. They are not only a technology vendor, but a business partner.
    Learn More
  • 1
    River ML

    River ML

    Online machine learning in Python

    River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    Nixtla ML

    Nixtla ML

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    TimeGPT is a production ready, generative pretrained transformer for time series. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code. Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable of...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Unlock the Power of Web Intelligence Icon
    Unlock the Power of Web Intelligence

    Collect public data at scale with industry-leading web scraping solutions

    See your detailed proxy usage statistics, easily create sub-users, whitelist your IPs, and conveniently manage your account. Do it all in the Oxylabs® dashboard. Save your time and resources with a data collection tool that has a 100% success rate and does all of the heavy-duty data extraction from e-commerce websites and search engines for you. With our provided solutions and the best proxies, focus on data analysis rather than data delivery. We make sure that our IP proxy resources are stable and reliable, so no issues occur during scraping jobs. We continuously work on expanding the current proxy pool to fit every customer's needs. Our clients & customers can reach out to us at any time, and we respond to their urgent needs around the clock. Choose the best proxy service and we’ll provide all the support you need. We want you to excel in scraping jobs, so we share all the know-how we have gathered over the years.
    Learn More
  • 5
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any cluster. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    Flyte
    Build production-grade data and ML workflows, hassle-free The infinitely scalable and flexible workflow orchestration platform that seamlessly unifies data, ML and analytics stacks. Don’t let friction between development and production slow down the deployment of new data/ML workflows and cause an increase in production bugs. Flyte enables rapid experimentation with production-grade software.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    ...Run your ML workflows anywhere: local, on-premises, or in the cloud environment of your choice. Keep yourself open to new tools - ZenML is easily extensible and forever open-source!
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve.
    Downloads: 13 This Week
    Last Update:
    See Project
  • AL Mobile | Construction and Field Service Management Tracking Software Icon
    AL Mobile | Construction and Field Service Management Tracking Software

    Construction, energy, and field service companies looking for a mobile workforce management solution to streamline time tracking, attendance tracking,

    Track your Users and Employees Easily. With a new graphical interface, you have an overview of all the data synced by your users directly from your screen.
    Learn More
  • 10
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    ...This metadata backend enables advanced functionality like experiment tracking or warm starting/resuming ML models from previous runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    ...MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    ...Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. ...
    Downloads: 31 This Week
    Last Update:
    See Project
  • 13
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of this (4) without having to re-engineer their models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ClearML

    ClearML

    Streamline your ML workflow

    ...It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    omegaml

    omegaml

    MLOps simplified. From ML Pipeline ⇨ Data Product without the hassle

    omega|ml is the innovative Python-native MLOps platform that provides a scalable development and runtime environment for your Data Products. Works from laptop to cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    The TensorFlow Model Optimization Toolkit is a suite of tools for optimizing ML models for deployment and execution. Among many uses, the toolkit supports techniques used to reduce latency and inference costs for cloud and edge devices (e.g. mobile, IoT). Deploy models to edge devices with restrictions on processing, memory, power consumption, network usage, and model storage space. Enable execution on and optimize for existing hardware or new special purpose accelerators.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    ...And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    ...Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source, modular API for differential privacy research. Everyone is welcome to contribute. ML practitioners will find this to be a gentle introduction to training a model with differential privacy as it requires minimal code changes. Differential Privacy researchers will find this easy to experiment and tinker with, allowing them to focus on what matters.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    ...It abstracts the common way to preprocess the data, construct the machine learning models, and perform hyper-parameter tuning to find the best model. It is no black box, as you can see exactly how the ML pipeline is constructed (with a detailed Markdown report for each ML model).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    imbalanced-learn

    imbalanced-learn

    A Python Package to Tackle the Curse of Imbalanced Datasets in ML

    Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying on scikit-learn (imported as sklearn) and provides tools when dealing with classification with imbalanced classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and reliable training process. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next