Showing 1149 open source projects for "java-ml"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    River ML

    River ML

    Online machine learning in Python

    River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 2
    ML for Beginners

    ML for Beginners

    12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

    ...It emphasizes ethical considerations and model evaluation—accuracy is not the only metric—so students learn to validate and communicate results responsibly. By the end, participants can build end-to-end ML experiments, interpret outputs, and iterate with confidence rather than just copying code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Nixtla ML

    Nixtla ML

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    TimeGPT is a production ready, generative pretrained transformer for time series. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code. Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable of...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • 5
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    OptScale

    OptScale

    FinOps and MLOps platform to run ML/AI and regular cloud workloads

    Run ML/AI or any type of workload with optimal performance and infrastructure cost. OptScale allows ML teams to multiply the number of ML/AI experiments running in parallel while efficiently managing and minimizing costs associated with cloud and infrastructure resources. OptScale MLOps capabilities include ML model leaderboards, performance bottleneck identification and optimization, bulk run of ML/AI experiments, experiment tracking, and more. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Core ML Stable Diffusion

    Core ML Stable Diffusion

    Stable Diffusion with Core ML on Apple Silicon

    Run Stable Diffusion on Apple Silicon with Core ML. python_coreml_stable_diffusion, a Python package for converting PyTorch models to Core ML format and performing image generation with Hugging Face diffusers in Python. StableDiffusion, a Swift package that developers can add to their Xcode projects as a dependency to deploy image generation capabilities in their apps. The Swift package relies on the Core ML model files generated by python_coreml_stable_diffusion. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any cluster. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 10
    Flyte
    Build production-grade data and ML workflows, hassle-free The infinitely scalable and flexible workflow orchestration platform that seamlessly unifies data, ML and analytics stacks. Don’t let friction between development and production slow down the deployment of new data/ML workflows and cause an increase in production bugs. Flyte enables rapid experimentation with production-grade software.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    ...Run your ML workflows anywhere: local, on-premises, or in the cloud environment of your choice. Keep yourself open to new tools - ZenML is easily extensible and forever open-source!
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Giskard

    Giskard

    Collaborative & Open-Source Quality Assurance for all AI models

    The testing framework dedicated to ML models, from tabular to LLMs. Giskard is an open-source testing framework dedicated to ML models, from tabular models to LLMs. Testing Machine Learning applications can be tedious. Since ML models depend on data, testing scenarios depend on the domain specificities and are often infinite. At Giskard, we believe that Machine Learning needs its own testing framework.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 15
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    ...This metadata backend enables advanced functionality like experiment tracking or warm starting/resuming ML models from previous runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    ...MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    DVC

    DVC

    Data Version Control | Git for Data & Models

    DVC is built to make ML models shareable and reproducible. It is designed to handle large files, data sets, machine learning models, and metrics as well as code. Version control machine learning models, data sets and intermediate files. DVC connects them with code and uses Amazon S3, Microsoft Azure Blob Storage, Google Drive, Google Cloud Storage, Aliyun OSS, SSH/SFTP, HDFS, HTTP, network-attached storage, or disc to store file contents.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    ...Build custom UIs or use pre-built labeling templates. Detect objects on image, bboxes, polygons, circular, and keypoints supported. Partition image into multiple segments. Use ML models to pre-label and optimize the process. Label Studio is an open-source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. ...
    Downloads: 31 This Week
    Last Update:
    See Project
  • 20
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of this (4) without having to re-engineer their models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Segments.ai

    Segments.ai

    Segments.ai Python SDK

    ...Intuitive labeling interfaces for images, videos, and 3D point clouds (lidar and RGBD). Obtain segmentation labels, vector labels, and more. Our labeling interfaces are set up to label fast and precise. Powerful ML assistance lets you label faster and reduce costs. Integrate data labeling into your existing ML pipelines and workflows using our simple yet powerful Python SDK. Onboard your own workforce or use one of our workforce partners. Our management tools make it easy to label and review large datasets together. Now, Segments.ai is providing a data labeling backbone to help robotics and AV companies build better datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ClearML

    ClearML

    Streamline your ML workflow

    ...It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next