Showing 518 open source projects for "python-ldap"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ... classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 5
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it. The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle. AI Fairness 360 package is available in both Python and R. The AI...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    Triton Inference Server is an open-source inference serving software that streamlines AI inferencing. Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Nixtla Neural Forecast

    Nixtla Neural Forecast

    Scalable and user friendly neural forecasting algorithms.

    NeuralForecast offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: MLP, LSTM, GRU, RNN, TCN, TimesNet, BiTCN, DeepAR, NBEATS, NBEATSx, NHITS, TiDE, DeepNPTS, TSMixer, TSMixerx, MLPMultivariate, DLinear, NLinear, TFT, Informer, AutoFormer, FedFormer, PatchTST, iTransformer, StemGNN, and TimeLLM. There is a shared belief in Neural forecasting methods'...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 10
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    MMEditing

    MMEditing

    MMEditing is a low-level vision toolbox based on PyTorch

    MMEditing is an open-source toolbox for low-level vision. It supports various tasks. MMEditing is a low-level vision toolbox based on PyTorch, supporting super-resolution, inpainting, matting, video interpolation, etc. We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules. The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks. The...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    DeepPavlov makes it easy for beginners and experts to create dialogue systems. The best place to start is with user-friendly tutorials. They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Scanpy

    Scanpy

    Single-cell analysis in Python

    Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PyTextRank

    PyTextRank

    Python implementation of TextRank algorithms

    PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, for graph-based natural language work -- and related knowledge graph practices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorLy

    TensorLy

    Tensor Learning in Python

    TensorLy is a Python library that aims at making tensor learning simple and accessible. It allows to easily perform tensor decomposition, tensor learning and tensor algebra. Its backend system allows to seamlessly perform computation with NumPy, PyTorch, JAX, TensorFlow, CuPy or Paddle, and run methods at scale on CPU or GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework...
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.