Showing 107 open source projects for "framework-arduinoststm32"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any cluster. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    DeepLabCut™ is an efficient method for 2D and 3D markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results (i.e. you can match human labeling accuracy) with minimal training data (typically 50-200 frames). We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. The package is open source, fast, robust, and can be used to compute 3D pose estimates or for multi-animals. Please see the original paper and the latest work below! This package is collaboratively developed by the Mathis Group & Mathis Lab at EPFL (releases prior to 2.1.9 were developed at Harvard University). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ...Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    ...The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. Ultimately, it aims to combine the power and flexibility of the PyTorch deep learning framework and the simplicity and intuitive nature of packages such as scikit-learn, with a focus on scientific data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    SkyPilot

    SkyPilot

    SkyPilot: Run AI and batch jobs on any infra

    SkyPilot is a framework for running AI and batch workloads on any infra, offering unified execution, high cost savings, and high GPU availability. Run AI and batch jobs on any infra (Kubernetes or 12+ clouds). Get unified execution, cost savings, and high GPU availability via a simple interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates those automatically based on a simple configuration. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines of code, ktrain allows you to easily and quickly. ktrain purposely pins to a lower version of transformers to include support for older versions of TensorFlow. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. JAX is a numerical computing library that combines NumPy, automatic differentiation, and first-class GPU/TPU support. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    ...It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can continue to use the same ML frameworks you use today and migrate your software onto Inf1 instances with minimal code changes and without tie-in to vendor-specific solutions. Neuron is pre-integrated into popular machine learning frameworks like TensorFlow, MXNet and Pytorch to provide a seamless training-to-inference workflow. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device performance by leveraging the CPU, GPU, and Neural Engine while minimizing its memory footprint and power consumption. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Featuretools

    Featuretools

    An open source python library for automated feature engineering

    An open source Python framework for automated feature engineering. Featuretools automatically creates features from temporal and relational datasets. Featuretools uses DFS for automated feature engineering. You can combine your raw data with what you know about your data to build meaningful features for machine learning and predictive modeling. Featuretools provides APIs to ensure only valid data is used for calculations, keeping your feature vectors safe from common label leakage problems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    ...We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified, comprehensive and efficient framework for research purpose. It can be installed from pip, conda and source, and is easy to use. We have implemented more than 100 recommender system models, covering four common recommender system categories in RecBole and eight toolkits of RecBole2.0, including General Recommendation, Sequential Recommendation, Context-aware Recommendation, and Knowledge-based Recommendation and sub-packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    ...When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote optimize optimizes a pre-trained model using NNCF or POT depending on the model format. NNCF optimization used for trained snapshots in a framework-specific format. POT optimization used for models exported in the OpenVINO IR format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    A simple yet powerful open-source framework that scales your MLOps stack with your needs. Set up ZenML in a matter of minutes, and start with all the tools you already use. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments.
    Downloads: 0 This Week
    Last Update:
    See Project