Showing 417 open source projects for "framework-arduinoststm32"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    NVIDIA NeMo Framework

    NVIDIA NeMo Framework

    Scalable generative AI framework built for researchers and developers

    NVIDIA NeMo is a scalable, cloud-native generative AI framework aimed at researchers and PyTorch developers working on large language models, multimodal models, and speech AI (ASR and TTS), with growing support for computer vision. It provides collections of domain-specific modules and reference implementations that make it easier to pre-train, fine-tune, and deploy very large models on multi-GPU and multi-node infrastructure.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Open AEA Framework

    Open AEA Framework

    A framework for open autonomous economic agent (AEA) development

    open-aea is an open-source framework for building autonomous software agents that can operate and interact independently on decentralized networks. Developed by Valory, it facilitates creating agents capable of economic transactions, communication, and smart contract interactions in Web3 ecosystems.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AI Chatbot Framework

    AI Chatbot Framework

    Python chatbot framework with Natural Language Understanding

    ...AI Chatbot Framework can live on any channel of your choice (such as Messenger, Slack etc.) by integrating it’s API with that platform. You don’t need to be an expert at artificial intelligence to create an awesome chatbot that has AI capabilities. With this boilerplate project you can create an AI-powered chatting machine in no time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AIOGram

    AIOGram

    Framework for Telegram Bot API written in Python 3.7 with asyncio

    aiogram is modern and fully asynchronous framework for Telegram Bot API written in Python with asyncio and aiohttp. It helps you to make your bots faster and simpler. Is a pretty simple and fully asynchronous framework for Telegram Bot API written in Python 3.7 with asyncio and aiohttp.
    Downloads: 20 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 5
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 6
    deepface

    deepface

    A Lightweight Face Recognition and Facial Attribute Analysis

    DeepFace is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, FaceNet, OpenFace, DeepFace, DeepID, ArcFace, Dlib, SFace and GhostFaceNet. Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 7
    flair

    flair

    A very simple framework for state-of-the-art NLP

    ...Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings and various transformers. A PyTorch NLP framework. Our framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Agent Zero

    Agent Zero

    Agent Zero AI framework

    Agent Zero is not a predefined agentic framework. It is designed to be dynamic, organically growing, and learning as you use it. Agent Zero is fully transparent, readable, comprehensible, customizable and interactive. Agent Zero uses the computer as a tool to accomplish its (your) tasks. Agents can communicate with their superiors and subordinates, asking questions, giving instructions, and providing guidance.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 9
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    ...Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Turn more customers into advocates. Icon
    Turn more customers into advocates.

    Fight skyrocketing paid media costs by turning your customers into a primary vehicle for acquisition, awareness, and activation with Extole.

    The platform's advanced capabilities ensure companies get the most out of their referral programs. Leverage custom events, profiles, and attributes to enable dynamic, audience-specific referral experiences. Use first-party data to tailor customer segment messaging, rewards, and engagement strategies. Use our flexible APIs to build management capabilities and consumer experiences–headlessly or hybrid. We have all the tools you need to build scalable, secure, and high-performing referral programs.
    Learn More
  • 10
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    ...They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual assistants development. It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    BioNeMo

    BioNeMo

    BioNeMo Framework: For building and adapting AI models

    BioNeMo is an AI-powered framework developed by NVIDIA for protein and molecular generation using deep learning models. It provides researchers and developers with tools to design, analyze, and optimize biological molecules, aiding in drug discovery and synthetic biology applications.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    Upsonic

    Upsonic

    The most reliable AI agent framework that supports MCP

    Upsonic is a reliability-focused AI agent framework designed for real-world applications. It enables the development of trusted agent workflows within organizations by incorporating advanced reliability features, such as verification layers and output evaluation systems. The framework supports the Model Context Protocol (MCP), facilitating integration with various tools and enhancing agent capabilities. ​
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Simple Evals

    Simple Evals

    Lightweight framework for evaluating large language model performance

    simple-evals is a lightweight evaluation framework developed by OpenAI for quickly testing models against small, focused benchmarks. It is designed to help researchers and developers run targeted evaluations without the complexity of large-scale pipelines. By emphasizing simplicity, the framework makes it easy to define new tasks, run evaluations, and interpret results in a reproducible way.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an awesome model on GitHub, written in JAX. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Agno

    Agno

    Lightweight framework for building Agents with memory, knowledge, etc.

    Agno is a modular, open-source artificial general intelligence (AGI) research platform that allows developers to build, evaluate, and experiment with cognitive architectures in a composable way. It provides a flexible framework for modeling reasoning, memory, decision-making, and planning, aimed at long-term AI research beyond narrow learning. Agno embraces multi-agent environments and symbolic reasoning as part of its core design, enabling experiments with structured knowledge, goal-oriented behaviors, and meta-learning. It’s designed for researchers seeking an extensible platform to explore AGI components without being tied to black-box models.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    PraisonAI

    PraisonAI

    PraisonAI application combines AutoGen and CrewAI or similar framework

    PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customization, and efficient human-agent collaboration. Chat with your ENTIRE Codebase. Praison AI, leveraging both AutoGen and CrewAI or any other agent framework, represents a low-code, centralized framework designed to simplify the creation and orchestration of multi-agent systems for various LLM applications, emphasizing ease of use, customization, and human-agent interaction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Giskard

    Giskard

    Collaborative & Open-Source Quality Assurance for all AI models

    The testing framework dedicated to ML models, from tabular to LLMs. Giskard is an open-source testing framework dedicated to ML models, from tabular models to LLMs. Testing Machine Learning applications can be tedious. Since ML models depend on data, testing scenarios depend on the domain specificities and are often infinite. At Giskard, we believe that Machine Learning needs its own testing framework.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Ray

    Ray

    A unified framework for scalable computing

    ...Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create annotated datasets, and build AI models in a standardized MONAI paradigm. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    Lingvo

    Lingvo

    Framework for building neural networks

    Lingvo is a TensorFlow based framework focused on building and training sequence models, especially for language and speech tasks. It was originally developed for internal research and later open sourced to support reproducible experiments and shared model implementations. The framework provides a structured way to define models, input pipelines, and training configurations using a common interface for layers, which encourages reuse across different tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 22
    Self-Operating Computer

    Self-Operating Computer

    A framework to enable multimodal models to operate a computer

    The Self-Operating Computer Framework is an innovative system that enables multimodal models to autonomously operate a computer by interpreting the screen and executing mouse and keyboard actions to achieve specified objectives. This framework is compatible with various multimodal models and currently integrates with GPT-4o, o1, Gemini Pro Vision, Claude 3, and LLaVa.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    HunyuanVideo

    HunyuanVideo

    HunyuanVideo: A Systematic Framework For Large Video Generation Model

    HunyuanVideo is a cutting-edge framework designed for large-scale video generation, leveraging advanced AI techniques to synthesize videos from various inputs. It is implemented in PyTorch, providing pre-trained model weights and inference code for efficient deployment. The framework aims to push the boundaries of video generation quality, incorporating multiple innovative approaches to improve the realism and coherence of the generated content.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Atomic Agents

    Atomic Agents

    Building AI agents, atomically

    The Atomic Agents framework is designed around the concept of atomicity to be an extremely lightweight and modular framework for building Agentic AI pipelines and applications without sacrificing developer experience and maintainability. The framework provides a set of tools and agents that can be combined to create powerful applications. It is built on top of Instructor and leverages the power of Pydantic for data and schema validation and serialization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next