Showing 12 open source projects for "umbrella-cli"

View related business solutions
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 1
    MLJ.jl

    MLJ.jl

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing, and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Sagify

    Sagify

    LLMs and Machine Learning done easily

    ...It abstracts the complexities involved in setting up and managing SageMaker resources, allowing developers to focus on building and fine-tuning models. Sagify provides a command-line interface (CLI) and supports various machine-learning frameworks, making it accessible for a wide range of users.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Robyn

    Robyn

    Experimental, AI/ML-powered and open sourced Marketing Mix Modeling

    Robyn is an open-source, AI/ML-powered Marketing Mix Modeling (MMM) toolkit developed by Meta Marketing Science under the “facebookexperimental” GitHub umbrella. Its goal is to democratize rigorous MMM: what traditionally required expert statisticians and expensive consulting becomes accessible to any company with data. Robyn takes in historical data (spends on different marketing channels, conversions, or revenue, and optional context or organic-media variables) and uses a combination of techniques, regularized regression (Ridge), time-series decomposition (trend, seasonality, holiday effects), and hyperparameter optimization (via evolutionary algorithms), to estimate the incremental impact of each marketing channel. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CML

    CML

    Continuous Machine Learning | CI/CD for ML

    Continuous Machine Learning (CML) is an open-source CLI tool for implementing continuous integration & delivery (CI/CD) with a focus on MLOps. Use it to automate development workflows, including machine provisioning, model training and evaluation, comparing ML experiments across project history, and monitoring changing datasets. CML can help train and evaluate models, and then generate a visual report with results and metrics, automatically on every pull request.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 5
    dstack

    dstack

    Open-source tool designed to enhance the efficiency of workloads

    dstack is an open-source tool designed to enhance the efficiency of running ML workloads in any cloud (AWS, GCP, Azure, Lambda, etc). It streamlines development and deployment, reduces cloud costs, and frees users from vendor lock-in.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Metarank

    Metarank

    A low code Machine Learning service that personalizes articles

    ...Ingest historical item listings, clicks and item metadata so Metarank can find hidden dependencies in the data using our simple JSON format.No Machine Learning experience is required, run our CLI tool with a set of features in a YAML configuration. Run Metarank API service, feed it with real-time events and receive a personalized ranking for your items that will boost conversion, click-through rate or any other business-critical metric you define.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    ...ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. All you have to do is load your data, and AutoML takes care of the rest of the model building process. ML.NET has been designed as an extensible platform so that you can consume other popular ML frameworks (TensorFlow, ONNX, Infer.NET, and more) and have access to even more machine learning scenarios, like image classification, object detection, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    ...If MXNet 2.x is installed, Sockeye can run both with PyTorch or MXNet. All models trained with 2.3.x (using MXNet) can be converted to models running with PyTorch using the converter CLI (sockeye.mx_to_pt).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ModelFox

    ModelFox

    ModelFox makes it easy to train, deploy, and monitor ML models

    ...Learn about your models and monitor them in production from your browser. ModelFox makes it easy to train, deploy, and monitor machine learning models. You can install the modelfox CLI by either downloading the binary from the latest GitHub release or by building from source. Train a machine learning model by running modelfox train with the path to a CSV file and the name of the column you want to predict. The CLI automatically transforms your data into features, trains a number of linear and gradient boosted decision tree models to predict the target column, and writes the best model to a .modelfox file. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 10
    ML.NET Samples

    ML.NET Samples

    Samples for ML.NET, an open source and cross-platform machine learning

    ...We're working on simplifying ML.NET usage with additional technologies that automate the creation of the model for you so you don't need to write the code by yourself to train a model, you simply need to provide your datasets. The "best" model and the code for running it will be generated for you. The ML.NET CLI (command-line interface) is a tool you can run on any command prompt (Windows, Mac or Linux) for generating good quality ML.NET models based on training datasets you provide. In addition, it also generates sample C# code to run/score that model plus the C# code that was used to create/train it so you can research what algorithm and settings it is using.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Docker Machine

    Docker Machine

    Machine management for a container-centric world

    ...Using docker-machine commands, you can start, inspect, stop, and restart a managed host, upgrade the Docker client and daemon, and configure a Docker client to talk to your host. Point the Machine CLI at a running, managed host, and you can run docker commands directly on that host. For example, run docker-machine env default to point to a host called default, follow on-screen instructions to complete env setup, and run docker ps, docker run hello-world, and so forth. Machine was the only way to run Docker on Mac or Windows previous to Docker v1.12.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB