Showing 6 open source projects for "mean"

View related business solutions
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 1
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    ...You can multi-column sort, custom pick, and delete the data. DataFrame also includes a large collection of analytical algorithms in the form of visitors. These are from basic stats such as Mean, and Std Deviation and return, … to more involved analysis such as Affinity Propagation, Polynomial Fit, and Fast Fourier transform of arbitrary length … including a good collection of trading indicators. You can also easily add your own algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform. Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions. LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    exchange-core

    exchange-core

    Ultra-fast matching engine written in Java based on LMAX Disruptor

    ...Single order book configuration is capable to process 5M operations per second on 10-years old hardware (Intel® Xeon® X5690) with moderate latency degradation. HFT optimized. Priority is a limit-order-move operation mean latency (currently ~0.5µs). Cancel operation takes ~0.7µs, placing new order ~1.0µs. Disk journaling and journal replay support, state snapshots (serialization) and restore operations, LZ4 compression. Lock-free and contention-free order matching and risk control algorithms. Matching engine and risk control operations are atomic and deterministic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    ...So a 41-frame video and a 500-frame video will both be reduced to 40 frames, with the 500-frame video essentially being fast-forwarded. We won’t do much preprocessing. A common preprocessing step for video classification is subtracting the mean, but we’ll keep the frames pretty raw from start to finish.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB