Showing 8 open source projects for "mean"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 1
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    ...You can multi-column sort, custom pick, and delete the data. DataFrame also includes a large collection of analytical algorithms in the form of visitors. These are from basic stats such as Mean, and Std Deviation and return, … to more involved analysis such as Affinity Propagation, Polynomial Fit, and Fast Fourier transform of arbitrary length … including a good collection of trading indicators. You can also easily add your own algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform. Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions. LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 5
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    exchange-core

    exchange-core

    Ultra-fast matching engine written in Java based on LMAX Disruptor

    ...Single order book configuration is capable to process 5M operations per second on 10-years old hardware (Intel® Xeon® X5690) with moderate latency degradation. HFT optimized. Priority is a limit-order-move operation mean latency (currently ~0.5µs). Cancel operation takes ~0.7µs, placing new order ~1.0µs. Disk journaling and journal replay support, state snapshots (serialization) and restore operations, LZ4 compression. Lock-free and contention-free order matching and risk control algorithms. Matching engine and risk control operations are atomic and deterministic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    ...So a 41-frame video and a 500-frame video will both be reduced to 40 frames, with the 500-frame video essentially being fast-forwarded. We won’t do much preprocessing. A common preprocessing step for video classification is subtracting the mean, but we’ll keep the frames pretty raw from start to finish.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    A simple experiment into machine learning using the psychological principles of operant conditioning, spontaneous recovery and extinction. The main idea is that the "pet" in question knows nothing and you must teach it what certain keystrokes mean.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB