Showing 885 open source projects for "artificial intelligence algorithm"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization

    Physical Symbolic Optimization (Φ-SO) - A symbolic optimization package built for physics. Symbolic regression module uses deep reinforcement learning to infer analytical physical laws that fit data points, searching in the space of functional forms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    stable-diffusion-videos

    stable-diffusion-videos

    Create videos with Stable Diffusion

    Create videos with Stable Diffusion by exploring the latent space and morphing between text prompts. Try it yourself in Colab.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    SKORCH

    SKORCH

    A scikit-learn compatible neural network library that wraps PyTorch

    A scikit-learn compatible neural network library that wraps PyTorch.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    BudouX

    BudouX

    Standalone, small, language-neutral

    Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning-powered line break organizer tool. It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    ..., is intuitive and easy to select. HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Axon

    Axon

    Nx-powered Neural Networks

    Nx-powered Neural Networks for Elixir. Axon consists of the following components. Functional API – A low-level API of numerical definitions (defn) of which all other APIs build on. Model Creation API – A high-level model creation API which manages model initialization and application. Optimization API – An API for creating and using first-order optimization techniques based on the Optax library. Training API – An API for quickly training models, inspired by PyTorch Ignite. Axon provides...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 10
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    ... a combination of deep reinforcement learning and imitation learning. Using ML-Agents allows developers to create more compelling gameplay and an enhanced game experience. Advancement of artificial intelligence (AI) research depends on figuring out tough problems in existing environments using current benchmarks for training AI models. Using Unity and the ML-Agents toolkit, you can create AI environments that are physically, visually, and cognitively rich.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Model Zoo

    Model Zoo

    Please do not feed the models

    FluxML Model Zoo is a collection of demonstration models built with the Flux machine learning library in Julia. The repository provides ready-to-run implementations across multiple domains, including computer vision, natural language processing, and reinforcement learning. Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    DeepLabCut™ is an efficient method for 2D and 3D markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results (i.e. you can match human labeling accuracy) with minimal training data (typically 50-200 frames). We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. The package is open source, fast, robust, and can be used to compute 3D pose estimates or for...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    MLJ.jl

    MLJ.jl

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing, and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Weaviate

    Weaviate

    Weaviate is a cloud-native, modular, real-time vector search engine

    Weaviate in a nutshell: Weaviate is a vector search engine and vector database. Weaviate uses machine learning to vectorize and store data, and to find answers to natural language queries. With Weaviate you can also bring your custom ML models to production scale. Weaviate in detail: Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer-Extraction, Classification, Customizable...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    spaGO

    spaGO

    Self-contained Machine Learning and Natural Language Processing lib

    A Machine Learning library written in pure Go designed to support relevant neural architectures in Natural Language Processing. Spago is self-contained, in that it uses its own lightweight computational graph both for training and inference, easy to understand from start to finish. The core module of Spago relies only on testify for unit testing. In other words, it has "zero dependencies", and we are committed to keeping it that way as much as possible. Spago uses a multi-module workspace to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    OpenMLSys-ZH

    OpenMLSys-ZH

    Machine Learning Systems: Design and Implementation

    This repository is the Chinese translation (or localization) of the OpenMLSys project documentation. Its aim is to make the technical content, tutorials, architecture descriptions, and user guides of the OpenMLSys system more accessible to Chinese-speaking users. The repo mirrors the structure of the original OpenMLSys docs: sections on system design, API references, deployment instructions, module overviews, and example workflows. It helps bridge language barriers in open machine learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    MLPerf

    MLPerf

    Reference implementations of MLPerf™ training benchmarks

    This is a repository of reference implementations for the MLPerf training benchmarks. These implementations are valid as starting points for benchmark implementations but are not fully optimized and are not intended to be used for "real" performance measurements of software frameworks or hardware. Benchmarking the performance of training ML models on a wide variety of use cases, software, and hardware drives AI performance across the tech industry. The MLPerf Training working group draws on...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    MNE-Python

    MNE-Python

    Magnetoencephalography (MEG) and Electroencephalography EEG in Python

    Open-source Python package for exploring, visualizing, and analyzing human neurophysiological data. MNE-Python is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, EEG, sEEG, ECoG, and more. It includes modules for data input/output, preprocessing, visualization, source estimation, time-frequency analysis, connectivity analysis, machine learning, statistics, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.