Showing 173 open source projects for "java projects on linux"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    Ceka

    Ceka

    Crowd Environment and its Knowledge Analysis

    A knowledge analysis tool for crowdsourcing based on Weka. We also have a Python version of Crowdsourcing Learning: CrowdwiseKit on GitHub (https://github.com/tssai-lab/CrowdwiseKit).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a detailed presentation of Stable Baselines in the Medium article. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    exchange-core

    exchange-core

    Ultra-fast matching engine written in Java based on LMAX Disruptor

    Exchange-core is an open-source market exchange core based on LMAX Disruptor, Eclipse Collections (ex. Goldman Sachs GS Collections), Real Logic Agrona, OpenHFT Chronicle-Wire, LZ4 Java, and Adaptive Radix Trees. Designed for high scalability and pauseless 24/7 operation under high-load conditions and providing low-latency responses. Single order book configuration is capable to process 5M operations per second on 10-years old hardware (Intel® Xeon® X5690) with moderate latency degradation....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ModelDB

    ModelDB

    Open Source ML Model Versioning, Metadata, and Experiment Management

    An open-source system for Machine Learning model versioning, metadata, and experiment management. ModelDB is an open-source system to version machine learning models including their ingredients code, data, config, and environment and to track ML metadata across the model lifecycle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 121 This Week
    Last Update:
    See Project
  • 6
    TensorFlow Object Counting API

    TensorFlow Object Counting API

    The TensorFlow Object Counting API is an open source framework

    The TensorFlow Object Counting API is an open source framework built on top of TensorFlow and Keras that makes it easy to develop object counting systems. Please contact if you need professional object detection & tracking & counting project with super high accuracy and reliability! You can train TensorFlow models with your own training data to built your own custom object counter system! If you want to learn how to do it, please check one of the sample projects, which cover some of the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    awesome-TS-anomaly-detection

    awesome-TS-anomaly-detection

    List of tools & datasets for anomaly detection on time-series data

    All lists are in alphabetical order. In the lists, maintained projects are prioritized vs not mantained. A repository is considered "not maintained" if the latest commit is > 1 year old, or explicitly mentioned by the authors.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    A.I. Stock Trends With WEKA & TA-Lib

    A.I. Stock Trends With WEKA & TA-Lib

    A Repository Of The Java Programs Presented in the Videos.

    This is the open/public source code repository for the Java programs shown in the YouTube videos - A.I. Stock Trends With WEKA, TA-Lib and more https://www.youtube.com/channel/UCPxmgFZDS7F06UBBxH5b4mg
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    MMSkeleton

    MMSkeleton

    A OpenMMLAB toolbox for human pose estimation, skeleton-based action

    MMSkeleton is an open-source toolbox for skeleton-based human understanding. It is a part of the open-mmlab project in the charge of Multimedia Laboratory, CUHK. MMSkeleton is developed on our research project ST-GCN. MMSkeleton provides a flexible framework for organizing codes and projects systematically, with the ability to extend to various tasks and scale up to complex deep models. MMSkeleton addresses to multiple tasks in human understanding. Build a custom skeleton-based dataset....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Parasoft: Automated Testing to Deliver Superior Quality Software Icon
    Parasoft: Automated Testing to Deliver Superior Quality Software

    Parasoft provides test automation for every phase of the software development life cycle.

    Parasoft helps organizations continuously deliver high-quality software with its AI-powered software testing platform and automated test solutions. Supporting the embedded, enterprise, and IoT markets, Parasoft’s proven technologies reduce the time, effort, and cost of delivering secure, reliable, and compliant software by integrating everything from deep code analysis and unit testing to web UI and API testing, plus service virtualization and complete code coverage, into the delivery pipeline. Bringing all this together, Parasoft’s award-winning reporting and analytics dashboard provides a centralized view of quality, enabling organizations to deliver with confidence and succeed in today’s most strategic ecosystems and development initiatives—security, safety-critical, Agile, DevOps, and continuous testing.
    Learn More
  • 10
    Shogun

    Shogun

    Unified and efficient Machine Learning since 1999

    Shogun is a unified and efficient Machine Learning since 1999. Shogun is implemented in C++ and offers automatically generated, unified interfaces to Python, Octave, Java / Scala, Ruby, C#, R, Lua. We are currently working on adding more languages including JavaScript, D, and Matlab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MIT Deep Learning Book

    MIT Deep Learning Book

    MIT Deep Learning Book in PDF format by Ian Goodfellow

    The Deep Learning textbook is a resource intended to help students and practitioners enter the field of machine learning in general and deep learning in particular. The online version of the book is now complete and will remain available online for free. MIT Deep Learning Book in PDF format (complete and parts) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. An MIT Press book Ian Goodfellow and Yoshua Bengio and Aaron Courville. Written by three experts in the field, Deep Learning is...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 12
    Machine Learning Yearning

    Machine Learning Yearning

    Machine Learning Yearning

    Artificial intelligence, machine learning and deep learning are transforming numerous industries. Professor Andrew Ng is currently writing a book on how to build machine learning projects. The point of this book is not to teach traditional machine learning algorithms, but to teach you how to make machine learning algorithms work. Some technical courses in AI will give you a tool, and this book will teach you how to use those tools. If you aspire to be a technical leader in AI and want to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Oryx

    Oryx

    Lambda architecture on Apache Spark, Apache Kafka for real-time

    Oryx 2 is a realization of the lambda architecture built on Apache Spark and Apache Kafka, but with specialization for real-time large-scale machine learning. It is a framework for building applications but also includes packaged, end-to-end applications for collaborative filtering, classification, regression and clustering. The application is written in Java, using Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and more. Configuration uses a single Typesafe Config config file, wherein...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Learn_Data_Science_in_3_Months

    Learn_Data_Science_in_3_Months

    This is the Curriculum for "Learn Data Science in 3 Months"

    This project lays out a 12-week plan to go from basics to a portfolio-ready understanding of data science. It breaks the journey into clear stages: Python fundamentals, data wrangling, visualization, statistics, machine learning, and end-to-end projects. The schedule mixes learning and doing, encouraging you to build small deliverables each week—like notebooks, dashboards, and model demos—to reinforce skills. It also includes suggestions for datasets and problem domains so you aren’t stuck...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Learn_Machine_Learning_in_3_Months

    Learn_Machine_Learning_in_3_Months

    This is the code for "Learn Machine Learning in 3 Months"

    This repository outlines an ambitious self-study curriculum for learning machine learning in roughly three months, emphasizing breadth, momentum, and hands-on practice. It sequences core topics—math foundations, classic ML, deep learning, and applied projects—so learners can pace themselves week by week. The plan mixes reading, lectures, coding assignments, and small build-it-yourself projects to reinforce understanding through repetition and implementation. Because ML is a wide field, the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    jMIR

    jMIR

    Music research software

    jMIR is an open-source software suite implemented in Java for use in music information retrieval (MIR) research. It can be used to study music in the form of audio recordings, symbolic encodings and lyrical transcriptions, and can also mine cultural information from the Internet. It also includes tools for managing and profiling large music collections and for checking audio for production errors. jMIR includes software for extracting features, applying machine learning algorithms, applying...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 17
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    Machine learning algorithms have become the key components in many big data applications. However, the full potential of machine learning is still far from being realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves but also the processing for applying them to real applications which often involve multiple steps and different algorithms. Our...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    The Teachingbox uses advanced machine learning techniques to relieve developers from the programming of hand-crafted sophisticated behaviors of autonomous agents (such as robots, game players etc...) In the current status we have implemented a well founded reinforcement learning core in Java with many popular usecases, environments, policies and learners. Obtaining the teachingbox: FOR USERS: If you want to download the latest releases, please visit:...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AI-Blocks

    AI-Blocks

    A powerful and intuitive WYSIWYG to create Machine Learning models

    A powerful and intuitive WYSIWYG interface that allows anyone to create Machine Learning models! The concept of AI-Blocs is to have a simple scene with draggable objects that have scripts attached to them. The model can be run directly on the editor or be exported to a standalone script that runs on Tensorflow. Variables are parsed from python scripts and can be edited from the AI-Blocs properties panel. To run your model simply press the "Play" button and let the magic happen! The project...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    This application allow user to predict dissolution profile of solid dispersion systems based on algorithms like symbolic regression, deep neural networks, random forests or generalized boosted models. Those techniques can be combined to create expert system. Application was created as a part of project K/DSC/004290 subsidy for young researchers from Polish Ministry of Higher Education.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Seldon Server

    Seldon Server

    Machine learning platform and recommendation engine on Kubernetes

    Seldon Server is a machine learning platform and recommendation engine built on Kubernetes. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Core focuses purely on deploying a wide range of ML models on Kubernetes, allowing complex runtime serving graphs to be managed in production. Seldon Core is a progression of the goals of the Seldon-Server project but also a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    GNAT

    GNAT

    GNAT recognizes gene names in text and maps them to NCBI Entrez Gene

    GNAT is a BioNLP/text mining tool to recognize and identify gene/protein names in natural language text. It will detect mentions of genes in text, such as PubMed/Medline abstracts, and disambiguate them to remove false positives and map them to the correct entry in the NCBI Entrez Gene database by gene ID. March 2017: We started to upload GNAT output on Medline. See files/results/medline/.
    Downloads: 0 This Week
    Last Update:
    See Project