Open Source Mac Machine Learning Software - Page 11

Machine Learning Software for Mac

View 53 business solutions
  • Free CRM Software With Something for Everyone Icon
    Free CRM Software With Something for Everyone

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    Think CRM software is just about contact management? Think again. HubSpot CRM has free tools for everyone on your team, and it’s 100% free. Here’s how our free CRM solution makes your job easier.
    Get free CRM
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 1
    Axon

    Axon

    Nx-powered Neural Networks

    Nx-powered Neural Networks for Elixir. Axon consists of the following components. Functional API – A low-level API of numerical definitions (defn) of which all other APIs build on. Model Creation API – A high-level model creation API which manages model initialization and application. Optimization API – An API for creating and using first-order optimization techniques based on the Optax library. Training API – An API for quickly training models, inspired by PyTorch Ignite. Axon provides abstractions that enable easy integration while maintaining a level of separation between each component. You should be able to use any of the APIs without dependencies on others. By decoupling the APIs, Axon gives you full control over each aspect of creating and training a neural network. At the lowest-level, Axon consists of a number of modules with functional implementations of common methods in deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    BCI Project Triathlon
    A three-step approach towards experimental brain-computer-interfaces, based on the OCZ nia device for EEG-data acquisition and artificial neural networks for signal-interpretation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BERTScore

    BERTScore

    BERT score for text generation

    Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). We now support about 130 models (see this spreadsheet for their correlations with human evaluation). Currently, the best model is Microsoft/debate-large-online, please consider using it instead of the default roberta-large in order to have the best correlation with human evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Octave program which trains artificial neural networks to play backgammon through self-play.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The #1 Embedded Analytics Solution for SaaS Teams. Icon
    The #1 Embedded Analytics Solution for SaaS Teams.

    Qrvey saves engineering teams time and money with a turnkey multi-tenant solution connecting your data warehouse to your SaaS application.

    Qrvey’s comprehensive embedded analytics software enables you to design more customizable analytics experiences for your end users.
    Try Developer Playground
  • 5
    Highly reusable and extensible Decision-Tree (Max-Gain) framework comprising of comprehensive input-processing and display functionality. Handles nominal, linear, continuous data. For preliminary description, refer - http://sushain.com/blog/archives/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Bayesian machine learning notebooks

    Bayesian machine learning notebooks

    Notebooks about Bayesian methods for machine learning

    Notebooks about Bayesian methods for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    Bermuda Text-to-Speech

    This project includes basic NLP and DSP techniques for Text-to-Speech

    See TTS demo at: http://rslp.racai.ro/index.php?page=tts This is an entirely written in JAVA project which includes a set of tools and methods designed to enable Multilingual Text-to-Speech (TTS) synthesis. We currently support English and Romanian but we will soon train more models and make them available for download. If you want to read more about our other NLP and TTS tools check out http://nlptools.racai.ro.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its implementation. Thanks to its JIT compiler, Julia is indeed in the sweet spot where we can easily write models in a high-level language and still have them running efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    Black Hole Cortex

    Sphere surface layers of visual cortex approach maximum info density

    Near the surface (even horizon) of a black hole, there is maximum information density in units of squared plancks (and some translation to qubits). Similarly, our imagination is the set of all possible things we can draw onto our most dense layer of visual cortex in electricity patterns. Bigger layers have more neurons to handle those possibilities. A Black Hole Cortex is a kind of visual cortex that has density of neuron layers similar to density at various radius from a black hole. What we think our eyes see, the imagination, is the densest and smallest layer. SphereSurfaces outside it recursively have more neurons, more surface area, but less density since it has to eventually dimension-reduce to high level ideas, like there are 10000 Wikipedia page names that cover most parts of the world. We can think of Wikipedia as a layer above our brains, a global SphereSurface of large surface area (a cortex layered on billions of minds) and small (10000 most important pages) density.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    BlazingSQL

    BlazingSQL

    BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python

    BlazingSQL is a GPU-accelerated SQL engine built on top of the RAPIDS ecosystem. RAPIDS is based on the Apache Arrow columnar memory format, and cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. BlazingSQL is a SQL interface for cuDF, with various features to support large-scale data science workflows and enterprise datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Blunder is an automated tool for analyzing chained exceptions in Java. It's usefull for classify, generate a customized error message and a list for possible solutions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Bootstrap Your Own Latent (BYOL)

    Bootstrap Your Own Latent (BYOL)

    Usable Implementation of "Bootstrap Your Own Latent" self-supervised

    Practical implementation of an astoundingly simple method for self-supervised learning that achieves a new state-of-the-art (surpassing SimCLR) without contrastive learning and having to designate negative pairs. This repository offers a module that one can easily wrap any image-based neural network (residual network, discriminator, policy network) to immediately start benefitting from unlabelled image data. There is now new evidence that batch normalization is key to making this technique work well. A new paper has successfully replaced batch norm with group norm + weight standardization, refuting that batch statistics are needed for BYOL to work. Simply plugin your neural network, specifying (1) the image dimensions as well as (2) the name (or index) of the hidden layer, whose output is used as the latent representation used for self-supervised training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    BorderFlow
    BorderFlow implements a general-purpose graph clustering algorithm. It maximizes the inner to outer flow ratio from the border of each cluster to the rest of the graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Brainiac, Is C/C++ Libraries, Programs, And Python, And Lua Scripts For Neural Networking And Genetic Programming, In An Attempt To Create A "Glue-It-All-Together" Project, Striving Towards General Artificial Intelligence
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    Deploy a ML inference service on a budget in less than 10 lines of code. BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST, Uvicorn/Gunicorn, backend servers etc., that are simply not within the scope of a typical data scientist. BudgetML is our answer to this challenge. It is supposed to be fast, easy, and developer-friendly. It is by no means meant to be used in a full-fledged production-ready setup. It is simply a means to get a server up and running as fast as possible with the lowest costs possible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    BudgetedSVM

    BudgetedSVM

    BudgetedSVM: A C++ Toolbox for Large-scale, Non-linear Classification

    We present BudgetedSVM, a C++ toolbox containing highly optimized implementations of three recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines (AMM), Budgeted Stochastic Gradient Descent (BSGD), and Low-rank Linearization SVM (LLSVM). BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, as it allows solving highly non-linear classi fication problems with millions of high-dimensional examples within minutes on a regular personal computer. We provide command-line and Matlab interfaces to BudgetedSVM, efficient API for handling large-scale, high-dimensional data sets, as well as detailed documentation to help developers use and further extend the toolbox.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    BudouX

    BudouX

    Standalone, small, language-neutral

    Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning-powered line break organizer tool. It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training script.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Burn

    Burn

    Burn is a new comprehensive dynamic Deep Learning Framework

    Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals. Burn emphasizes performance, flexibility, and portability for both training and inference. Developed in Rust, it is designed to empower machine learning engineers and researchers across industry and academia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    BytePS is a high-performance and generally distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on either TCP or RDMA networks. BytePS outperforms existing open-sourced distributed training frameworks by a large margin. For example, on BERT-large training, BytePS can achieve ~90% scaling efficiency with 256 GPUs (see below), which is much higher than Horovod+NCCL. In certain scenarios, BytePS can double the training speed compared with Horovod+NCCL. We show our experiment on BERT-large training, which is based on GluonNLP toolkit. The model uses mixed precision. We use Tesla V100 32GB GPUs and set batch size equal to 64 per GPU. Each machine has 8 V100 GPUs (32GB memory) with NVLink-enabled. Machines are inter-connected with 100 Gbps RDMA network. This is the same hardware setup you can get on AWS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework that simplifies event and stream processing. Because Bytewax couples the stream and event processing capabilities of Flink, Spark, and Kafka Streams with the friendly and familiar interface of Python, you can re-use the Python libraries you already know and love. Connect data sources, run stateful transformations, and write to various downstream systems with built-in connectors or existing Python libraries. Bytewax is a Python framework and Rust distributed processing engine that uses a dataflow computational model to provide parallelizable stream processing and event processing capabilities similar to Flink, Spark, and Kafka Streams. You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads. Bytewax is not limited to streaming applications but excels anywhere that data can be distributed at the input and output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Byzer-lang

    Byzer-lang

    A low-code open-source programming language for data pipeline

    Byzer (former MLSQL) is a low-code, open-sourced, and distributed programming language for data pipeline, analytics, and AI in a cloud-native way. Design protocol: Everything is a table. Byzer is a SQL-like language, to simplify data pipeline, analytics, and AI, combined with built-in algorithms and extensions. We believe that everything is a table, a simple and powerful SQL-like language can significantly reduce human efforts of data development without switching different tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    C-IL2P

    C-IL2P

    Original C-IL2P

    This is a C++ implementation of the original C-IL2P system, invented by Artur D'Avila Garcez and Gerson Zaverucha. C-IL2P is a neural-symbolic learning system which uses a propositional logic program to create a three-layer recursive neural network and uses back-propagation to learn from examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Computer System for Adaptive Intelligent Life :: seeks to create a software system that is capable of learning. The project's ultimate goal is to further the ability of software to both adapt to individual users, and to respond their needs.
    Downloads: 0 This Week
    Last Update:
    See Project