Showing 267 open source projects for "source code tracking"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    xLearn

    xLearn

    High performance, easy-to-use, and scalable machine learning (ML)

    xLearn is a high-performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM), all of which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data. Many real-world datasets deal with high dimensional sparse feature vectors like a recommendation system where the number of categories and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Skater

    Skater

    Python library for model interpretation/explanations

    ...Model interpretation is the ability to explain and validate the decisions of a predictive model to enable fairness, accountability, and transparency in algorithmic decision-making. The library has embraced object-oriented and functional programming paradigms as deemed necessary to provide scalability and concurrency while keeping code brevity in mind.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CFNet

    CFNet

    Training a Correlation Filter end-to-end allows lightweight networks

    ...This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    This is a Keras port of the SSD model architecture introduced by Wei Liu et al. in the paper SSD: Single Shot MultiBox Detector. Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 10
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    ...Obtaining the teachingbox: FOR USERS: If you want to download the latest releases, please visit: http://search.maven.org/#search|ga|1|teachingbox FOR DEVELOPERS: 1) If you use Apache Maven, just add the following dependency to your pom.xml: <dependency> <groupId>org.sf.teachingbox</groupId> <artifactId>teachingbox-core</artifactId> <version>1.2.3</version> </dependency> 2) If you want to check out the most recent source-code: git clone https://git.code.sf.net/p/teachingbox/core teachingbox-core Documentation: https://sourceforge.net/p/teachingbox/documentation/HEAD/tree/trunk/manual/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code just like the rest of your program. Tangent is useful to researchers and students who not only want to write their models in Python, but also read and debug automatically-generated derivative code without sacrificing speed and flexibility. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    auto_ml

    auto_ml

    Automated machine learning for analytics & production

    auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. Before you go any further, try running the code. Load up some data (either a DataFrame, or a list of dictionaries, where each dictionary is a row of data). Make a column_descriptions dictionary that tells us which attribute name in each row represents the value we’re...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20

    Chronological Cohesive Units

    The experimental source code for the paper

    The experimental source code for the paper, "A Novel Recommendation Approach Based on Chronological Cohesive Units in Content Consuming"
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Caffe

    Caffe

    A fast open framework for deep learning

    Caffe is an open source deep learning framework that’s focused on expression, speed and modularity. It’s got an expressive architecture that encourages application and innovation, and extensible code that’s great for active development. Caffe also offers great speed, capable of processing over 60M images per day with a single NVIDIA K40 GPU. It’s arguably one of the fastest convnet implementations around.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Grenade

    Grenade

    Deep Learning in Haskell

    Grenade is a composable, dependently typed, practical, and fast recurrent neural network library for concise and precise specifications of complex networks in Haskell. Because the types are so rich, there's no specific term level code required to construct this network; although it is of course possible and easy to construct and deconstruct the networks and layers explicitly oneself. Networks in Grenade can be thought of as a heterogeneous list of layers, where their type includes not only...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    TEES

    Turku Event Extraction System

    Turku Event Extraction System (TEES) is a free and open source natural language processing system developed for the extraction of events and relations from biomedical text. It is written mostly in Python, and should work in generic Unix/Linux environments. Currently, the TEES source code repository still remains on GitHub at http://jbjorne.github.com/TEES/ where there is also a wiki with more information.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB