Showing 291 open source projects for "source code tracking"

View related business solutions
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DVC Extension for Visual Studio Code

    DVC Extension for Visual Studio Code

    https://github.com/iterative/vscode-dvc

    A Visual Studio Code extension that integrates Data Version Control (DVC) into the development environment, enhancing reproducibility and collaboration for machine learning projects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    OpenCV (Open Source Computer Vision Library) is a comprehensive open-source library for computer vision, machine learning, and image processing. It enables developers to build real-time vision applications ranging from facial recognition to object tracking. OpenCV supports a wide range of programming languages including C++, Python, and Java, and is optimized for both CPU and GPU operations.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    ...Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. Set wandb.config once at the beginning of your script to save your hyperparameters, input settings (like dataset name or model type), and any other independent variables for your experiments. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 5
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    ...Keep yourself open to new tools - ZenML is easily extensible and forever open-source!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Aim

    Aim

    An easy-to-use & supercharged open-source experiment tracker

    ...The Aim standard package comes with all integrations. If you'd like to modify the integration and make it custom, create a new integration package and share with others. Aim is an open-source, self-hosted AI Metadata tracking tool designed to handle 100,000s of tracked metadata sequences. The two most famous AI metadata applications are: experiment tracking and prompt engineering. Aim provides a performant and beautiful UI for exploring and comparing training runs, and prompt sessions.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    ...The code is freely available and easy to install in a few clicks with Anaconda (and pypi). DeepLabCut is an open-source Python package for animal pose estimation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Computer Vision in Action

    Computer Vision in Action

    A computer vision closed-loop learning platform

    ...It serves as a hands-on companion for learners and engineers who want to understand not just the theory, but how computer vision is actually implemented for tasks like object detection, image classification, feature tracking, optical flow, and image segmentation. The repository includes structured code examples, scripts, and notebooks that cover pipeline construction, preprocessing, model inference, and visual output rendering, making it easy for newcomers or intermediate practitioners to adapt patterns to their own projects. It also explores how to combine classical computer vision techniques with modern neural network-based models, offering insight into when each approach is most effective.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 10
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    ...Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As shown below, it results in readable code that can always be visualized. Hamilton loads that definition and automatically builds the DAG for you. Hamilton brings modularity and structure to any Python application moving data: ETL pipelines, ML workflows, LLM applications, RAG systems, BI dashboards, and the Hamilton UI allows you to automatically visualize, catalog, and monitor execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tokenizers

    Tokenizers

    Fast State-of-the-Art Tokenizers optimized for Research and Production

    Fast State-of-the-art tokenizers, optimized for both research and production. Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in Transformers. Train new vocabularies and tokenize, using today’s most used tokenizers. Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server’s CPU. Easy to use, but also...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and reproduce experiments with artifact tracking. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Lazy Predict

    Lazy Predict

    Lazy Predict help build a lot of basic models without much code

    Lazy Predict helps build a lot of basic models without much code and helps understand which models work better without any parameter tuning.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Google AI Edge Gallery

    Google AI Edge Gallery

    A gallery that showcases on-device ML/GenAI use cases

    Gallery is a curated collection of on-device machine learning examples, demo apps, and model artifacts designed to help developers experiment with and deploy ML at the edge. The project bundles runnable samples that show how to run TensorFlow Lite/Edge TPU models (and similar lightweight runtimes) on mobile and embedded platforms, demonstrating common tasks like image classification, object detection, audio recognition, and pose estimation. Each sample is intended to be both a learning aid...
    Downloads: 43 This Week
    Last Update:
    See Project
  • 15
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++)...
    Downloads: 27 This Week
    Last Update:
    See Project
  • 16
    supervision

    supervision

    We write your reusable computer vision tools

    We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    Flux is an elegant approach to machine learning. It's a 100% pure Julia stack and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Flux provides a single, intuitive way to define models, just like mathematical notation. Julia transparently compiles your code, optimizing and fusing kernels for the GPU, for the best performance. Existing Julia libraries are differentiable and can be incorporated...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    dlib

    dlib

    Toolkit for making machine learning and data analysis applications

    ...It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments. Dlib's open source licensing allows you to use it in any application, free of charge. Good unit test coverage, the ratio of unit test lines of code to library lines of code is about 1 to 4. The library is tested regularly on MS Windows, Linux, and Mac OS X systems. No other packages are required to use the library, only APIs that are provided by an out of the box OS are needed. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 19
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    ...Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    PyCaret

    PyCaret

    An open-source, low-code machine learning library in Python

    PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive. In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    fugue

    fugue

    A unified interface for distributed computing

    Fugue is a unified interface for distributed computing that lets users execute Python, Pandas, and SQL code on Spark, Dask, and Ray with minimal rewrites.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    TensorFlow Extended (TFX) is a Google-production-scale machine learning platform based on TensorFlow. It provides a configuration framework to express ML pipelines consisting of TFX components. TFX pipelines can be orchestrated using Apache Airflow and Kubeflow Pipelines. Both the components themselves and the integrations with orchestration systems can be extended. TFX components interact with an ML Metadata backend that keeps a record of component runs, input and output artifacts, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →