Showing 151 open source projects for "php-simple-html-dom-parser"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    ...In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and cheaply) acquired from different sources. pyntcloud enables simple and interactive exploration of point cloud data, regardless of which sensor was used to generate it or what the use case is. Although it was built for being used on Jupyter Notebooks, the library is suitable for other kinds of uses. pyntcloud is composed of several modules (as independent as possible) that englobe common point cloud processing operations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    ModelFox

    ModelFox

    ModelFox makes it easy to train, deploy, and monitor ML models

    ModelFox makes it easy to train, deploy, and monitor machine learning models. Train a model from a CSV file on the command line. Make predictions from Elixir, Go, JavaScript, PHP, Python, Ruby, or Rust. Learn about your models and monitor them in production from your browser. ModelFox makes it easy to train, deploy, and monitor machine learning models. You can install the modelfox CLI by either downloading the binary from the latest GitHub release or by building from source. Train a machine learning model by running modelfox train with the path to a CSV file and the name of the column you want to predict. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Guild AI

    Guild AI

    Experiment tracking, ML developer tools

    Guild AI is an open-source experiment tracking toolkit designed to bring systematic control to machine learning workflows, enabling users to build better models faster. It automatically captures every detail of training runs as unique experiments, facilitating comprehensive tracking and analysis. Users can compare and analyze runs to deepen their understanding and incrementally improve models. Guild AI simplifies hyperparameter tuning by applying state-of-the-art algorithms through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    LayoutParser

    LayoutParser

    A Unified Toolkit for Deep Learning Based Document Image Analysis

    With the help of state-of-the-art deep learning models, Layout Parser enables extracting complicated document structures using only several lines of code. This method is also more robust and generalizable as no sophisticated rules are involved in this process. A complete instruction for installing the main Layout Parser library and auxiliary components. Learn how to load DL Layout models and use them for layout detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Flashlight library

    Flashlight library

    A C++ standalone library for machine learning

    Flashlight is a fast, flexible machine learning library written entirely in C++ by Facebook AI Research and the creators of Torch, TensorFlow, Eigen, and Deep Speech. Native support in C++ and simple extensibility make Flashlight a powerful research framework that's hackable to its core and enables fast iteration on new experimental setups and algorithms with little unopinionated and without sacrificing performance. In a single repository, Flashlight provides apps for research across multiple domains. Flashlight can be broken down into several components as described above. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    igel

    igel

    Machine learning tool that allows you to train and test models

    ...I find myself often stuck writing boilerplate code and thinking too much about where to start. Therefore, I decided to create this tool. igel is built on top of other ML frameworks. It provides a simple way to use machine learning without writing a single line of code. Igel is highly customizable, but only if you want to. Igel does not force you to customize anything. Besides default values, igel can use auto-ml features to figure out a model that can work great with your data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 10
    Scikit-Optimize

    Scikit-Optimize

    Sequential model-based optimization with a `scipy.optimize` interface

    Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements several methods for sequential model-based optimization. skopt aims to be accessible and easy to use in many contexts. The library is built on top of NumPy, SciPy and Scikit-Learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Perceptual Similarity Metric and Dataset

    Perceptual Similarity Metric and Dataset

    LPIPS metric. pip install lpips

    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    BlazingSQL

    BlazingSQL

    BlazingSQL is a lightweight, GPU accelerated, SQL engine for Python

    BlazingSQL is a GPU-accelerated SQL engine built on top of the RAPIDS ecosystem. RAPIDS is based on the Apache Arrow columnar memory format, and cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data. BlazingSQL is a SQL interface for cuDF, with various features to support large-scale data science workflows and enterprise datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FARM

    FARM

    Fast & easy transfer learning for NLP

    FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built upon transformers and provides additional features to simplify the life of developers: Parallelized preprocessing, highly modular design, multi-task learning, experiment tracking, easy debugging and close integration with AWS SageMaker. With FARM you can build fast proofs-of-concept for tasks like text classification, NER or question answering and transfer them easily into production.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SRU

    SRU

    Training RNNs as Fast as CNNs

    Common recurrent neural architectures scale poorly due to the intrinsic difficulty in parallelizing their state computations. In this work, we propose the Simple Recurrent Unit (SRU), a light recurrent unit that balances model capacity and scalability. SRU is designed to provide expressive recurrence, enable highly parallelized implementation, and comes with careful initialization to facilitate the training of deep models. We demonstrate the effectiveness of SRU on multiple NLP tasks. SRU achieves 5--9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Machine Learning Beginner

    Machine Learning Beginner

    Machine Learning Beginner Public Account Works

    Machine Learning Beginner targets newcomers who are just getting started with machine learning and need a gentle, guided path. It introduces the core vocabulary and the mental map of supervised and unsupervised learning before moving into simple algorithms. The materials prioritize conceptual clarity, then progressively add code to solidify understanding. Step-by-step examples help learners see how data preparation, model training, evaluation, and iteration fit together. Because the scope is intentionally beginner-friendly, it’s an approachable springboard to more advanced resources. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    For quite some time now, we know about the benefits of transfer learning in Computer Vision (CV) applications. Nowadays, pre-trained Deep Convolution Neural Networks (DCNNs) are the first go-to pre-solutions to learn a new task. These large models are trained on huge supervised corpora, like the ImageNet. And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    ...BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST, Uvicorn/Gunicorn, backend servers etc., that are simply not within the scope of a typical data scientist. BudgetML is our answer to this challenge. It is supposed to be fast, easy, and developer-friendly. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extensive collection of customizable neural layers to build advanced AI models quickly, based on this, the community open-sourced mass tutorials and applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    gradslam

    gradslam

    gradslam is an open source differentiable dense SLAM library

    gradslam is an open-source framework providing differentiable building blocks for simultaneous localization and mapping (SLAM) systems. We enable the usage of dense SLAM subsystems from the comfort of PyTorch. The question of “representation” is central in the context of dense simultaneous localization and mapping (SLAM). Newer learning-based approaches have the potential to leverage data or task performance to directly inform the choice of representation. However, learning representations...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    EfficientNet Keras

    EfficientNet Keras

    Implementation of EfficientNet model. Keras and TensorFlow Keras

    ...In this paper, we systematically study model scaling and identify that carefully balancing network depth, width, and resolution can lead to better performance. Based on this observation, we propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective compound coefficient. We demonstrate the effectiveness of this method on scaling up MobileNets and ResNet.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    CNN Explainer

    CNN Explainer

    Learning Convolutional Neural Networks with Interactive Visualization

    In machine learning, a classifier assigns a class label to a data point. For example, an image classifier produces a class label (e.g, bird, plane) for what objects exist within an image. A convolutional neural network, or CNN for short, is a type of classifier, which excels at solving this problem! A CNN is a neural network: an algorithm used to recognize patterns in data. Neural Networks in general are composed of a collection of neurons that are organized in layers, each with their own...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project