Showing 55 open source projects for "cpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind. Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Keras.js

    Keras.js

    Run Keras models in the browser, with GPU support using WebGL

    Run Keras models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc. Check out the demos/ directory for real examples running Keras.js in VueJS. Library version compatibility, Keras 2.1.2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3

    Accelerated Feature Extraction Tool

    A fast GPU accelerated feature extraction software for speech analysis

    ...The tool is a specially designed to process very large audio data sets. It uses GPU acceleration if compatible GPU available (CUDA as weel as OpenCL, NVIDIA, AMD, and Intel GPUs are supported). CPU SSE intrinsic instruction set is used in cases where no compatible GPU present. The output files are stored in HTK format. The software is developed at Department of Cybernetics at University of West Bohemia in Pilsen.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4

    Unsupervised Random Forest

    On-line Unsupervised Random Forest

    This tool uses Random Forest and PAM to cluster observations and to calculate the dissimilarity between observations. It supports on-line prediction of new observations (no need to retrain); and supports datasets that contain both continuous (e.g. CPU load) and categorical (e.g. VM instance type) features. In particular, we use an unsupervised formulation of the Random Forest algorithm to calculate similarities and provide them as input to a clustering algorithm. For the sake of efficiency and meeting the dynamism requirement of autonomic clouds, our methodology consists of two steps: (i) off-line clustering and (ii) on-line prediction. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5

    LBP in multiple platforms

    LBP implementation in multiple computing platforms (ARM,GPU, DSP...)

    ...When selecting a suitable LBP implementation platform, the specific application and its requirements in terms of performance, size, energy efficiency, cost and developing time has to be carefully considered. This is a software toolbox that collects software implementations of the Local Binary Pattern operator in several platforms: - OpenCL for CPU & GPU - OpenCL for GPU (branchless) - C code optimized for ARM - OpenGL ES 2.0 shaders mobile GPUs - C code for TI C64x DSP core (branchless) - C code for TTA processor synthesis If you use the code somewhere, please cite: Bordallo López M., Nieto A., Boutellier J., Hannuksela J., and Silvén O. "Evaluation of real-time LBP computing in multiple architectures," Journal of Real Time Image Processing, 2014
    Downloads: 0 This Week
    Last Update:
    See Project