Showing 1024 open source projects for "linux is"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    kcws

    kcws

    Deep Learning Chinese Word Segment

    Deep learning chinese word segment. Install the bazel code construction tool and install tensorflow (currently this project requires tf 1.0.0alpha version or above) Switch to the code directory of this project and run ./configure. Compile background service. Pay attention to the public account of waiting for words and reply to kcws to get the corpus download address. Extract the corpus to a directory. Change to the code directory.After installing tensorflow, switch to the kcws code...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AI-Blocks

    AI-Blocks

    A powerful and intuitive WYSIWYG to create Machine Learning models

    A powerful and intuitive WYSIWYG interface that allows anyone to create Machine Learning models! The concept of AI-Blocs is to have a simple scene with draggable objects that have scripts attached to them. The model can be run directly on the editor or be exported to a standalone script that runs on Tensorflow. Variables are parsed from python scripts and can be edited from the AI-Blocs properties panel. To run your model simply press the "Play" button and let the magic happen! The project...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 5
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment, supports almost all commonly used deep learning frameworks, supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode, and works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version). Their Dockerfile generator that allows you to customize your own environment with Lego-like modules, and automatically resolves the dependencies for you. For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    This application allow user to predict dissolution profile of solid dispersion systems based on algorithms like symbolic regression, deep neural networks, random forests or generalized boosted models. Those techniques can be combined to create expert system. Application was created as a part of project K/DSC/004290 subsidy for young researchers from Polish Ministry of Higher Education.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Seldon Server

    Seldon Server

    Machine learning platform and recommendation engine on Kubernetes

    Seldon Server is a machine learning platform and recommendation engine built on Kubernetes. Seldon reduces time-to-value so models can get to work faster. Scale with confidence and minimize risk through interpretable results and transparent model performance. Seldon Core focuses purely on deploying a wide range of ML models on Kubernetes, allowing complex runtime serving graphs to be managed in production. Seldon Core is a progression of the goals of the Seldon-Server project but also a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    UnrealCV

    UnrealCV

    Connecting Computer Vision to Unreal Engine

    UnrealCV is a project to help computer vision researchers build virtual worlds using Unreal Engine (UE). It extends UE with a plugin. UnrealCV can be used in two ways. The first one is using a compiled game binary with UnrealCV embedded. This is as simple as running a game, no knowledge of Unreal Engine is required. The second is installing the UnrealCV plugin into Unreal Engine and using the editor to build a new virtual world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    The vision of the Apache NNVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models into minimum deployable modules. Infrastructure to automatically generates and optimize models on more backend with better performance....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    GNAT

    GNAT

    GNAT recognizes gene names in text and maps them to NCBI Entrez Gene

    GNAT is a BioNLP/text mining tool to recognize and identify gene/protein names in natural language text. It will detect mentions of genes in text, such as PubMed/Medline abstracts, and disambiguate them to remove false positives and map them to the correct entry in the NCBI Entrez Gene database by gene ID. March 2017: We started to upload GNAT output on Medline. See files/results/medline/.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    auto_ml

    auto_ml

    Automated machine learning for analytics & production

    auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. Before you go any further, try running the code. Load up some data (either a DataFrame, or a list of dictionaries, where each dictionary is a row of data). Make a column_descriptions dictionary that tells us which attribute name in each row represents the value we’re...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Deep Learning

    Deep Learning

    Deep Learning Book Chinese Translation

    With the help and proofreading of many netizens, the Chinese version was finally published. Although there are still many problems, at least 90% of the content is readable and accurate. We have preserved the meaning of the original book Deep Learning as much as possible and retained the original language of the book. However, our level is limited, and we cannot eliminate the variance of many readers. We still need everyone's advice and help to reduce translation bias together. All you have...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    This project aims to develop and share fast frequent subgraph mining and graph learning algorithms. Currently we release the frequent subgraph mining package FFSM and later we will include new functions for graph regression and classification package
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18

    Chronological Cohesive Units

    The experimental source code for the paper

    The experimental source code for the paper, "A Novel Recommendation Approach Based on Chronological Cohesive Units in Content Consuming"
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Genetic Oversampling Weka Plugin

    Genetic Oversampling Weka Plugin

    A Weka Plugin that uses a Genetic Algorithm for Data Oversampling

    Weka genetic algorithm filter plugin to generate synthetic instances. This Weka Plugin implementation uses a Genetic Algorithm to create new synthetic instances to solve the imbalanced dataset problem. See my master thesis available for download, for further details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    OWL Machine Learning

    Machine learning algorithm using OWL

    Feature construction and selection are two key factors in the field of Machine Learning (ML). Usually, these are very time-consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or split to create features from raw data. This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind. Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DeepLearningProject

    DeepLearningProject

    An in-depth machine learning tutorial

    This tutorial tries to do what most Most Machine Learning tutorials available online do not. It is not a 30 minute tutorial that teaches you how to "Train your own neural network" or "Learn deep learning in under 30 minutes". It's a full pipeline which you would need to do if you actually work with machine learning - introducing you to all the parts, and all the implementation decisions and details that need to be made. The dataset is not one of the standard sets like MNIST or CIFAR, you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deep Photo Style Transfer

    Deep Photo Style Transfer

    Code and data for paper "Deep Photo Style Transfer"

    Deep Photo Style Transfer is an implementation of the algorithm described in the paper “Deep Photo Style Transfer” (arXiv 1703.07511). The software allows users to transfer the style of one photograph to another while preserving photorealism and semantic consistency. It relies on semantic segmentation masks to guide style transfer (so that e.g. sky maps to sky, building maps to building), and uses a matting Laplacian regularization term to ensure smooth transitions. The repository provides...
    Downloads: 0 This Week
    Last Update:
    See Project