Julia Machine Learning Software

View 440 business solutions

Browse free open source Julia Machine Learning Software and projects below. Use the toggles on the left to filter open source Julia Machine Learning Software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Deliver secure remote access with OpenVPN. Icon
    Deliver secure remote access with OpenVPN.

    Trusted by nearly 20,000 customers worldwide, and all major cloud providers.

    OpenVPN's products provide scalable, secure remote access — giving complete freedom to your employees to work outside the office while securely accessing SaaS, the internet, and company resources.
    Get started — no credit card required.
  • 1
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 45 This Week
    Last Update:
    See Project
  • 2
    DiffEqFlux.jl

    DiffEqFlux.jl

    Pre-built implicit layer architectures with O(1) backprop, GPUs

    DiffEqFlux.jl is a Julia library that combines differential equations with neural networks, enabling the creation of neural differential equations (neural ODEs), universal differential equations, and physics-informed learning models. It serves as a bridge between the DifferentialEquations.jl and Flux.jl libraries, allowing for end-to-end differentiable simulations and model training in scientific machine learning. DiffEqFlux.jl is widely used for modeling dynamical systems with learnable components.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    Flux is an elegant approach to machine learning. It's a 100% pure Julia stack and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Flux provides a single, intuitive way to define models, just like mathematical notation. Julia transparently compiles your code, optimizing and fusing kernels for the GPU, for the best performance. Existing Julia libraries are differentiable and can be incorporated directly into Flux models. Cutting-edge models such as Neural ODEs are first class, and Zygote enables overhead-free gradients. GPU kernels can be written directly in Julia via CUDA.jl. Flux is uniquely hackable and any part can be tweaked, from GPU code to custom gradients and layers.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    DataDrivenDiffEq.jl

    DataDrivenDiffEq.jl

    Data driven modeling and automated discovery of dynamical systems

    DataDrivenDiffEq.jl is a package for finding systems of equations automatically from a dataset. The methods in this package take in data and return the model which generated the data. A known model is not required as input. These methods can estimate equation-free and equation-based models for discrete, continuous differential equations or direct mappings.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Get Avast Free Antivirus | Your top-rated shield against malware and online scams Icon
    Get Avast Free Antivirus | Your top-rated shield against malware and online scams

    Boost your PC's defense against cyberthreats and web-based scams.

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • 5
    MLJ.jl

    MLJ.jl

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing, and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    NeuralPDE.jl

    NeuralPDE.jl

    Physics-Informed Neural Networks (PINN) Solvers

    NeuralPDE.jl is a Julia library for solving partial differential equations (PDEs) using physics-informed neural networks and scientific machine learning. Built on top of the SciML ecosystem, it provides a flexible and composable interface for defining PDEs and training neural networks to approximate their solutions. NeuralPDE.jl enables hybrid modeling, data-driven discovery, and fast PDE solvers in high dimensions, making it suitable for scientific research and engineering applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Turing.jl

    Turing.jl

    Bayesian inference with probabilistic programming

    Bayesian inference with probabilistic programming.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its implementation. Thanks to its JIT compiler, Julia is indeed in the sweet spot where we can easily write models in a high-level language and still have them running efficiently.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    FEniCS.jl

    FEniCS.jl

    A scientific machine learning (SciML) wrapper for the FEniCS

    FEniCS.jl is a wrapper for the FEniCS library for finite element discretizations of PDEs. This wrapper includes three parts. Installation and direct access to FEniCS via a Conda installation. Alternatively one may use their current FEniCS installation. A low-level development API and provides some functionality to make directly dealing with the library a little bit easier, but still requires knowledge of FEniCS itself. Interfaces have been provided for the main functions and their attributes, and instructions to add further ones can be found here. A high-level API for usage with DifferentialEquations. An example can be seen in solving the heat equation with high-order adaptive time-stepping. Various gists/jupyter notebooks have been created to provide a brief overview of the overall functionality and of any differences between the pythonic FEniCS and the Julian wrapper. DifferentialEquations.jl ecosystem. Paraview can also be used to visualize various results just like in FEniCS.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 10
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    The Julia Programming Language

    The Julia Programming Language

    High-level, high-performance dynamic language for technical computing

    Julia is a fast, open source high-performance dynamic language for technical computing. It can be used for data visualization and plotting, deep learning, machine learning, scientific computing, parallel computing and so much more. Having a high level syntax, Julia is easy to use for programmers of every level and background. Julia has more than 2,800 community-registered packages including various mathematical libraries, data manipulation tools, and packages for general purpose computing. Libraries from Python, R, C/Fortran, C++, and Java can also be used.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    AutoMLPipeline.jl

    AutoMLPipeline.jl

    Package that makes it trivial to create and evaluate machine learning

    AutoMLPipeline (AMLP) is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, and manipulate pipeline expressions and makes it easy to discover optimal structures for machine learning regression and classification. To illustrate, here is a pipeline expression and evaluation of a typical machine learning workflow that extracts numerical features (numf) for ica (Independent Component Analysis) and pca (Principal Component Analysis) transformations, respectively, concatenated with the hot-bit encoding (ohe) of categorical features (catf) of a given data for rf (Random Forest) modeling.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Knet

    Knet

    Koç University deep learning framework

    Knet.jl is a deep learning package implemented in Julia, so you should be able to run it on any machine that can run Julia. It has been extensively tested on Linux machines with NVIDIA GPUs and CUDA libraries, and it has been reported to work on OSX and Windows. If you would like to try it on your own computer, please follow the instructions on Installation. If you would like to try working with a GPU and do not have access to one, take a look at Using Amazon AWS or Using Microsoft Azure. If you find a bug, please open a GitHub issue. If you don't have access to a GPU machine, but would like to experiment with one, Amazon Web Services is a possible solution. I have prepared a machine image (AMI) with everything you need to run Knet. Here are step-by-step instructions for launching a GPU instance with a Knet image (the screens may have changed slightly since this writing).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    MLDatasets.jl

    MLDatasets.jl

    Utility package for accessing common Machine Learning datasets

    This package represents a community effort to provide a common interface for accessing common Machine Learning (ML) datasets. In contrast to other data-related Julia packages, the focus of MLDatasets.jl is specifically on downloading, unpacking, and accessing benchmark datasets. Functionality for the purpose of data processing or visualization is only provided to a degree that is special to some datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Zygote

    Zygote

    21st century AD

    Zygote provides source-to-source automatic differentiation (AD) in Julia, and is the next-gen AD system for the Flux differentiable programming framework. For more details and benchmarks of Zygote's technique, see our paper. You may want to check out Flux for more interesting examples of Zygote usage; the documentation here focuses on internals and advanced AD usage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.