C# Machine Learning Software

View 441 business solutions

Browse free open source C# Machine Learning Software and projects below. Use the toggles on the left to filter open source C# Machine Learning Software by OS, license, language, programming language, and project status.

  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    emgucv

    emgucv

    Cross platform .Net wrapper to the OpenCV image processing library

    Emgu CV is a cross platform .Net wrapper to the OpenCV image processing library. Allowing OpenCV functions to be called from .NET compatible languages. The wrapper can be compiled by Visual Studio and Unity, it can run on Windows, Linux, Mac OS, iOS and Android.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 2
    Unity ML-Agents Toolkit

    Unity ML-Agents Toolkit

    Unity machine learning agents toolkit

    Train and embed intelligent agents by leveraging state-of-the-art deep learning technology. Creating responsive and intelligent virtual players and non-playable game characters is hard. Especially when the game is complex. To create intelligent behaviors, developers have had to resort to writing tons of code or using highly specialized tools. With Unity Machine Learning Agents (ML-Agents), you are no longer “coding” emergent behaviors, but rather teaching intelligent agents to “learn” through a combination of deep reinforcement learning and imitation learning. Using ML-Agents allows developers to create more compelling gameplay and an enhanced game experience. Advancement of artificial intelligence (AI) research depends on figuring out tough problems in existing environments using current benchmarks for training AI models. Using Unity and the ML-Agents toolkit, you can create AI environments that are physically, visually, and cognitively rich.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    Speech Recognition in English & Polish

    Speech Recognition in English & Polish

    Speech recognition software for English & Polish languages

    Software for speech recognition in English & Polish languages. Basic versions of SkryBot: 1. SkryBot Home Speech (English Language) - https://sourceforge.net/projects/skrybotdomowy/files/ReleasesEnglish/InstalatorSkryBotHomeSpeechDemo-2.6.9.18117.exe/download 2. SkryBot DoMowy (Polish Language) - https://sourceforge.net/projects/skrybotdomowy/files/ReleasesPolish/InstalatorSkryBotDoMowyDemo-2.4.9.18117.exe/download More help: https://sourceforge.net/p/skrybotdomowy/wiki/ Domain advanced versions (Polish Language) 1. SkryBot Prawo - for judicial professionals. 2. SkryBot Administracyjny - for civil and government administration. 3. SkryBot Medycyna Rodzinna - for physicians Professional version of SkryBot (commercial) offers you: 1. Audio conversion and cutting sound files into smaller ones. 2. Searching for words or phrases in sound files (recognized by SkryBot). 3. Editing sound files and automatic cutting off long silence parts in audio file.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 4
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    With ML.NET, you can create custom ML models using C# or F# without having to leave the .NET ecosystem. ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. All you have to do is load your data, and AutoML takes care of the rest of the model building process. ML.NET has been designed as an extensible platform so that you can consume other popular ML frameworks (TensorFlow, ONNX, Infer.NET, and more) and have access to even more machine learning scenarios, like image classification, object detection, and more.
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    ML.NET Samples

    ML.NET Samples

    Samples for ML.NET, an open source and cross-platform machine learning

    ML.NET is a cross-platform open-source machine learning framework that makes machine learning accessible to .NET developers. In this GitHub repo, we provide samples that will help you get started with ML.NET and how to infuse ML into existing and new .NET apps. We're working on simplifying ML.NET usage with additional technologies that automate the creation of the model for you so you don't need to write the code by yourself to train a model, you simply need to provide your datasets. The "best" model and the code for running it will be generated for you. The ML.NET CLI (command-line interface) is a tool you can run on any command prompt (Windows, Mac or Linux) for generating good quality ML.NET models based on training datasets you provide. In addition, it also generates sample C# code to run/score that model plus the C# code that was used to create/train it so you can research what algorithm and settings it is using.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    OpenAI-API-dotnet

    OpenAI-API-dotnet

    An unofficial C#/.NET SDK for accessing the OpenAI GPT-3 API

    A simple C# .NET wrapper library to use with OpenAI's API. More context on my blog. This is my original unofficial wrapper library around the OpenAI API.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Multiple Back-Propagation (with CUDA)

    Multiple Back-Propagation (with CUDA)

    Open source software for training neural networks

    Multiple Back-Propagation is an open source software application for training neural networks with the backpropagation and the multiple back propagation algorithms. Currently this project is also hosted at http://code.google.com/p/multiplebackpropagation
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    neural network designer

    neural network designer

    a dbms for neural nets. Chatbots, DTrees, random forests, n-grams,...

    This project consists out of a windows based designer application and a library (that can run on multiple platforms, including android) together with several demo applications (including an MVC3 chatbot client and an android application). It is probably best compared to a database management system, but for neural networks instead of relational data. As such, the library is optimized for handling any type of data-size by using advanced streaming and caching algorithms. With the designer, you are able to create different types of decision trees, random forests, n-grams, pattern-matchers, conversational agents and all sorts of AI related algorithms. You can combine statistical approaches as well as pattern matchers or others. Do natural language processing, image or data analysis & interpretation,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    GPU Machine Learning Library. This library aims to provide machine learning researchers and practitioners with a high performance library by taking advantage of the GPU enormous computational power. The library is developed in C++ and CUDA.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Crowdtesting That Delivers | Testeum Icon
    Crowdtesting That Delivers | Testeum

    Unfixed bugs delaying your launch? Test with real users globally – check it out for free, results in days.

    Testeum connects your software, app, or website to a worldwide network of testers, delivering detailed feedback in under 48 hours. Ensure functionality and refine UX on real devices, all at a fraction of traditional costs. Trusted by startups and enterprises alike, our platform streamlines quality assurance with actionable insights.
    Click to perfect your product now.
  • 10
    Example of using Neural networks to implement chase between mouses and cats. Mouses search for cheese on map, while cats are chasing mouses. Goal of the project is to see will both sides learn some new behavior over time using genetic algorithms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit for All of Us

    DSTK - DataScience ToolKit is an opensource free software for statistical analysis, data visualization, text analysis, and predictive analytics. Newer version and smaller file size can be found at: https://sourceforge.net/projects/dstk3/ It is designed to be straight forward and easy to use, and familar to SPSS user. While JASP offers more statistical features, DSTK tends to be a broad solution workbench, including text analysis and predictive analytics features. Of course you may specify JASP for advanced data editing and RapidMiner for advanced prediction modeling. DSTK is written in C#, Java and Python to interface with R, NLTK, and Weka. It can be expanded with plugins using R Scripts. We have also created plugins for more statistical functions, and Big Data Analytics with Microsoft Azure HDInsights (Spark Server) with Livy. License: R, RStudio, NLTK, SciPy, SKLearn, MatPlotLib, Weka, ... each has their own licenses.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    HoldemAI

    HoldemAI

    Texas Holdem Poker AI

    Full ring Texas Hold'em poker game built around an intelligent AI system. The AI uses players' betting actions to calculate a probability distribution of their hole cards and uses it to evaluate hand strength and the best possible action. Small random changes are made to mimic human behavior and make the AI less predictable. Future versions will include adaptive opponent modeling using neural networks to improve the AI's strength. The AI code can be easily adapted for input from screen scrapers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    A C# library for use in image processing and computer vision research.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    {IBA}Miner is an expert system, being developed at the AI-Lab at IBA. The purpose of this software is to provide businesses an easy to use system in which the analysts can easily create and test models and the end-users get predictions for new instances.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    .NET for Apache Spark

    .NET for Apache Spark

    A free, open-source, and cross-platform big data analytics framework

    .NET for Apache Spark provides high-performance APIs for using Apache Spark from C# and F#. With these .NET APIs, you can access the most popular Dataframe and SparkSQL aspects of Apache Spark, for working with structured data, and Spark Structured Streaming, for working with streaming data. .NET for Apache Spark is compliant with .NET Standard - a formal specification of .NET APIs that are common across .NET implementations. This means you can use .NET for Apache Spark anywhere you write .NET code allowing you to reuse all the knowledge, skills, code, and libraries you already have as a .NET developer. .NET for Apache Spark runs on Windows, Linux, and macOS using .NET Core, or Windows using .NET Framework. It also runs on all major cloud providers including Azure HDInsight Spark, Amazon EMR Spark, AWS & Azure Databricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    This project consists in a set of challenges to recognize images acquired from 3d Lasers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Azul OS

    Azul OS

    Azul OS version dev(Linux) IA

    Azul OS version dev , est une version de Azul pour les developpeurs basé sur Linux , doté d'une IA un programme nommé Azul voice et qui est un système de reconnaissance vocale qui comprend ce que vous dites et réponds par des sensations . Azul Dev est une distribution linux , qui comporte des outils et des lib pour les developpeurs avec une Interface Gnome # Azul voice système sensation . Windows & linux. En cours .. # Azul voice version windows Azul interface . Disponible # Azul dev rev 0.4.1 . Disponible [changelog] software added : php5-mysql gcc-c++ php5-gd php5-ctype perl-HTML-Tagset php5-zip php5-curl kernel-source mysql-connector-java php5-pear php5-mcrypt php5-ftp devel_C_C++ gimp gedit recode libreoffice MozillaFirefox wireshark audacity nano This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. #Blog : http://azul0.wordpress.com/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Very basic cellular automaton implementation in C#. Based upon the "Togetherness" algorithm described at http://www.hermetic.ch/pca/tg.htm.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    .NET library for embedding CLIPS in to .NET applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CRFSharp

    CRFSharp

    CRFSharp is a .NET(C#) implementation of Conditional Random Field

    CRFSharp(aka CRF#) is a .NET(C#) implementation of Conditional Random Fields, an machine learning algorithm for learning from labeled sequences of examples. It is widely used in Natural Language Process (NLP) tasks, for example: word breaker, postagging, named entity recognized, query chunking and so on. CRF#'s mainly algorithm is the same as CRF++ written by Taku Kudo. It encodes model parameters by L-BFGS. Moreover, it has many significant improvement than CRF++, such as totally parallel encoding, optimizing memory usage and so on. Currently, when training corpus, compared with CRF++, CRF# can make full use of multi-core CPUs and only uses very low memory, and memory grow is very smoothly and slowly while amount of training corpus, tags increase. with multi-threads process, CRF# is more suitable for large data and tags training than CRF++ now. For example, in machine with 64GB, CRF# encodes model with more than 4.5 hundred million features quickly.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Medical Datasets (In a text file, with space separated values) can be loaded to the system. By choosing either one of the two classifiers, Neural network or Decision Tree, the system can be trained and evaluated.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    A genetic programming library made in C#. A very easy library to use, The user can use this library in order to randomly generate and evolve programs. Current version 0.2
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    FlubuCore

    FlubuCore

    A cross platform build and deployment automation system

    "FlubuCore - Fluent Builder Core" is a cross-platform build and deployment automation system. You can define your build and deployment scripts in C# using an intuitive fluent interface. This gives you code completion, IntelliSense, debugging, FlubuCore custom analyzers, and native access to the whole .NET ecosystem inside of your scripts. FlubuCore offers a .net (core) console application that uses power of roslyn to compile and execute scripts. Intuitive and easy to learn. C#, fluent interface, and IntelliSense make even the most complex script creation a breeze. Large number of often used built-in tasks like e.g. versioning, running tests, creating deployment packages, publishing NuGet packages, docker tasks, git tasts, sql tasks, npm tasks, executing PowerShell, managing IIS scripts and many more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    This is a simple C# implementation of HyperNEAT implemented on NVidia's Compute Unified Device Architecture (CUDA).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.