Showing 8 open source projects for "pattern"

View related business solutions
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 3,907 This Week
    Last Update:
    See Project
  • 2
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    Frameworks using nGraph Compiler stack to execute workloads have shown up to 45X performance boost when compared to native framework implementations. We've also seen performance boosts running workloads that are not included on the list of Validated workloads, thanks to nGraph's powerful subgraph pattern matching. Additionally, we have integrated nGraph with PlaidML to provide deep learning performance acceleration on Intel, nVidia, & AMD GPUs. nGraph Compiler aims to accelerate developing AI workloads using any deep learning framework and deploying to a variety of hardware targets. We strongly believe in providing freedom, performance, and ease of use to AI developers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4

    LBP in multiple platforms

    LBP implementation in multiple computing platforms (ARM,GPU, DSP...)

    The Local Binary Pattern (LBP) is a texture operator that is used in several different computer vision applications and implemented in a variety of platforms. When selecting a suitable LBP implementation platform, the specific application and its requirements in terms of performance, size, energy efficiency, cost and developing time has to be carefully considered.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 5

    jaf_Kernels

    Similarity Word-Sequence Kernels for Sentence Clustering toolkit

    This project implements the techniques used in this paper: @INPROCEEDINGS{Andres10a, author = {Jesús Andrés-Ferrer and Germán Sanchis-Trilles and Francisco Casacuberta}, title = {Similarity Word-Sequence Kernels for Sentence Clustering}, booktitle = {Proceedings of the 8th International Workshop on Statistical Pattern Recognition}, year = {2010}, } This project depends on jaf_Utils: http://sourceforge.net/projects/jafutils/ Install it prior installation of jaf_Kernels.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Stochastico is an implementation of stochastic discrimination for pattern recognition, predictive modeling and data mining applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ALiVE
    A tool that helps develope the course of cognitive thought processes through software. This tool will look at the raw hex code of any input. It establishes pattern recognition over a mesured time incrament that in itself is at a different pace.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Data Mining Platform is a platform for data mining and analysis. It contains many of the new and sophisticated methods such as kernel-based classification, two-way clustering, bayesian networks, pattern recognition for time series analysis and many other
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB