Machine Learning Software for BSD

Browse free open source Machine Learning software and projects for BSD below. Use the toggles on the left to filter open source Machine Learning software by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Stay in Flow. Let Zenflow Handle the Heavy Lifting. Icon
    Stay in Flow. Let Zenflow Handle the Heavy Lifting.

    Your AI engineering control center. Zenflow turns specs into shipped features using parallel agents and multi-repo intelligence.

    Zenflow is your engineering control center, turning specs into shipped features. Parallel agents handle coding, testing, and refactoring with real repo context. Multi-agent workflows remove bottlenecks and automate routine work so developers stay focused and in flow.
    Try free now
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,256 This Week
    Last Update:
    See Project
  • 2
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 68 This Week
    Last Update:
    See Project
  • 3
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 62 This Week
    Last Update:
    See Project
  • 4
    Kaldi
    Speech recognition research toolkit
    Downloads: 20 This Week
    Last Update:
    See Project
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 5
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that currently provides compilation via C, JAX, and Numba. Based on one of the most widely-used Python tensor libraries: Theano.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Model Zoo

    Model Zoo

    Please do not feed the models

    FluxML Model Zoo is a collection of demonstration models built with the Flux machine learning library in Julia. The repository provides ready-to-run implementations across multiple domains, including computer vision, natural language processing, and reinforcement learning. Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for building new models. GPU acceleration is supported for most models through CUDA integration, enabling efficient training on compatible hardware. With community contributions encouraged, the Model Zoo acts as a hub for sharing and exploring diverse machine learning applications in Julia.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Learn_Machine_Learning_in_3_Months

    Learn_Machine_Learning_in_3_Months

    This is the code for "Learn Machine Learning in 3 Months"

    This repository outlines an ambitious self-study curriculum for learning machine learning in roughly three months, emphasizing breadth, momentum, and hands-on practice. It sequences core topics—math foundations, classic ML, deep learning, and applied projects—so learners can pace themselves week by week. The plan mixes reading, lectures, coding assignments, and small build-it-yourself projects to reinforce understanding through repetition and implementation. Because ML is a wide field, the curriculum favors pragmatic coverage over academic completeness, pointing learners to widely used tools and approachable resources. It’s intended to help beginners overcome decision paralysis by giving a concrete schedule and a minimal set of action-oriented tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 10
    Machine Learning Homework

    Machine Learning Homework

    Matlab Coding homework for Machine Learning

    The Machine-Learning-homework repository by user “Ayatans” is a collection of MATLAB code intended to solve or illustrate assignments in machine learning courses. It includes implementations of standard machine learning algorithms (such as regression, classification, etc.), scripts for data loading and preprocessing, and evaluation routines (e.g. accuracy, error metrics). Because it is structured as homework or practice material, the code is likely intended more for didactic use than for production deployment. It may contain comments, example datasets, and perhaps test scripts. The repository does not seem to be heavily maintained as a software project; rather, it functions as a library of solved problems and educational examples. The project is useful if you want working MATLAB examples of classic ML techniques, to study, adapt, or compare with your own implementations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 24 This Week
    Last Update:
    See Project
  • 12
    UnBBayes

    UnBBayes

    Framework & GUI for Bayes Nets and other probabilistic models.

    UnBBayes is a probabilistic network framework written in Java. It has both a GUI and an API with inference, sampling, learning and evaluation. It supports Bayesian networks, influence diagrams, MSBN, OOBN, HBN, MEBN/PR-OWL, PRM, structure, parameter and incremental learning. Please, visit our wiki (https://sourceforge.net/p/unbbayes/wiki/Home/) for more information. Check out the license section (https://sourceforge.net/p/unbbayes/wiki/License/) for our licensing policy.
    Leader badge
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    jMIR

    jMIR

    Music research software

    jMIR is an open-source software suite implemented in Java for use in music information retrieval (MIR) research. It can be used to study music in the form of audio recordings, symbolic encodings and lyrical transcriptions, and can also mine cultural information from the Internet. It also includes tools for managing and profiling large music collections and for checking audio for production errors. jMIR includes software for extracting features, applying machine learning algorithms, applying heuristic error error checkers, mining metadata and analyzing metadata.
    Leader badge
    Downloads: 7 This Week
    Last Update:
    See Project
  • 14
    GPLAB is a Genetic Programming Toolbox for MATLAB
    Downloads: 11 This Week
    Last Update:
    See Project
  • 15
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    BagaturChess

    BagaturChess

    Java Chess Engine

    This is UCI Chess Engine writen in Java. Since version 1.4 (inclusive) the project was moved to https://github.com/bagaturchess/Bagatur
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17

    JAABA

    The Janelia Automated Animal Behavior Annotator

    The Janelia Automatic Animal Behavior Annotator (JAABA) is a machine learning-based system that enables researchers to automatically compute interpretable, quantitative statistics describing video of behaving animals. Through our system, users encode their intuition about the structure of behavior by labeling the behavior of the animal, e.g. walking, grooming, or following, in a small set of video frames. JAABA uses machine learning techniques to convert these manual labels into behavior detectors that can then be used to automatically classify the behaviors of animals in large data sets with high throughput. JAABA combines an intuitive graphical user interface, a fast and powerful machine learning algorithm, and visualizations of the classifier into an interactive, usable system for creating automatic behavior detectors. Documentation is available at: http://jaaba.sourceforge.net/
    Leader badge
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    DOGMA is a MATLAB toolbox for discriminative online learning. It implements all the state of the art algorithms in a unique and simple framework. Examples are Perceptron, Passive-Aggresive, ALMA, NORMA, SILK, Projectron, RBP, Banditron, etc.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    OpenNN - Open Neural Networks Library

    OpenNN - Open Neural Networks Library

    Machine learning algorithms for advanced analytics

    OpenNN is a software library written in C++ for advanced analytics. It implements neural networks, the most successful machine learning method. Some typical applications of OpenNN are business intelligence (customer segmentation, churn prevention…), health care (early diagnosis, microarray analysis…) and engineering (performance optimization, predictive maitenance…). OpenNN does not deal with computer vision or natural language processing. The main advantage of OpenNN is its high performance. This library outstands in terms of execution speed and memory allocation. It is constantly optimized and parallelized in order to maximize its efficiency. The documentation is composed by tutorials and examples to offer a complete overview about the library. OpenNN is developed by Artelnics, a company specialized in artificial intelligence.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    AminePlatform

    AminePlatform

    Amine is a Multi-Layer Platform for the dev. of Intelligent Systems

    Amine is an Artificial Intelligence Multi-Layer Java Open Source Platform dedicated to the development of various kinds of Intelligent Systems and Agents (Knowledge-Based, Ontology-Based, Conceptual Graph -CG- Based, NLP, Reasoning and Learning, Natural Language Processing, etc.). Ontology, KB can be created and manipulated with various processes. CG theory is used as the main knowledge representation language. Amine provides two languages: PROLOG+CG which extends PROLOG with CG and Amine modules, and SYNERGY which is a visual activation/propagation based language. CGs are considered by SYNERGY as activable/executable graphs. See for more detail: //amine-platform.sourceforge.net/
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    mlpy

    mlpy

    Machine Learning Python

    mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. mlpy provides high-level functions and classes allowing, with few lines of code, the design of rich workflows for classification, regression, clustering and feature selection. mlpy is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 3. mlpy is available both for Python >=2.6 and Python 3.X.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    openModeller is a complete C++ framework for species potential distribution modelling. The project also includes a graphical user interface, a web service interface and an API for Python.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    ADAMS

    ADAMS

    ADAMS is a workflow engine for building complex knowledge workflows.

    ADAMS is a flexible workflow engine aimed at quickly building and maintaining data-driven, reactive workflows, easily integrated into business processes. Instead of placing operators on a canvas and manually connecting them, a tree structure and flow control operators determine how data is processed (sequentially/parallel). This allows rapid development and easy maintenance of large workflows, with hundreds or thousands of operators. Operators include machine learning (WEKA, MOA, MEKA) and image processing (ImageJ, JAI, BoofCV, LIRE and Gnuplot). R available using Rserve. WEKA webservice allows other frameworks to use WEKA models. Fast prototyping with Groovy and Jython. Read/write support for various databases and spreadsheet applications.
    Leader badge
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    This project develops a simple, fast and easy to use Python graph library using NumPy, Scipy and PySparse.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Isolation Forest detects data-anomalies using binary trees. Platform: R (www.r-project.org) Reference: Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou, “Isolation Forest”, IEEE International Conference on Data Mining 2008 (ICDM 08)
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next