Machine Learning Software for BSD

Browse free open source Machine Learning software and projects for BSD below. Use the toggles on the left to filter open source Machine Learning software by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,562 This Week
    Last Update:
    See Project
  • 2
    dlib C++ Library
    Dlib is a C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real world problems.
    Leader badge
    Downloads: 151 This Week
    Last Update:
    See Project
  • 3
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 103 This Week
    Last Update:
    See Project
  • 4
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 10 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Kaldi
    Speech recognition research toolkit
    Downloads: 32 This Week
    Last Update:
    See Project
  • 6
    KotlinDL

    KotlinDL

    High-level Deep Learning Framework written in Kotlin

    KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. Under the hood, it uses TensorFlow Java API and ONNX Runtime API for Java. KotlinDL offers simple APIs for training deep learning models from scratch, importing existing Keras and ONNX models for inference, and leveraging transfer learning for tailoring existing pre-trained models to your tasks. This project aims to make Deep Learning easier for JVM and Android developers and simplify deploying deep learning models in production environments.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    Machine Learning Beginner

    Machine Learning Beginner

    Machine Learning Beginner Public Account Works

    Machine Learning Beginner targets newcomers who are just getting started with machine learning and need a gentle, guided path. It introduces the core vocabulary and the mental map of supervised and unsupervised learning before moving into simple algorithms. The materials prioritize conceptual clarity, then progressively add code to solidify understanding. Step-by-step examples help learners see how data preparation, model training, evaluation, and iteration fit together. Because the scope is intentionally beginner-friendly, it’s an approachable springboard to more advanced resources. Educators also reference it as a compact toolkit for workshops and short intro courses.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning workloads from research and simulation to real-world production deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    OpenNN - Open Neural Networks Library

    OpenNN - Open Neural Networks Library

    Machine learning algorithms for advanced analytics

    OpenNN is a software library written in C++ for advanced analytics. It implements neural networks, the most successful machine learning method. Some typical applications of OpenNN are business intelligence (customer segmentation, churn prevention…), health care (early diagnosis, microarray analysis…) and engineering (performance optimization, predictive maitenance…). OpenNN does not deal with computer vision or natural language processing. The main advantage of OpenNN is its high performance. This library outstands in terms of execution speed and memory allocation. It is constantly optimized and parallelized in order to maximize its efficiency. The documentation is composed by tutorials and examples to offer a complete overview about the library. OpenNN is developed by Artelnics, a company specialized in artificial intelligence.
    Downloads: 10 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    CVPR 2025

    CVPR 2025

    Collection of CVPR 2025 papers and open source projects

    CVPR 2025 curates accepted CVPR 2025 papers and pairs them with their corresponding code implementations when available, giving researchers and practitioners a fast way to move from reading to reproducing. It organizes entries by topic areas such as detection, segmentation, generative models, 3D vision, multi-modal learning, and efficiency, so you can navigate the year’s output efficiently. Each paper entry typically includes a title, author list, and links to the paper PDF and official or third-party code repositories. The list frequently highlights benchmarks, leaderboards, or notable results so readers can assess impact at a glance. Because conference content evolves rapidly, the repository is updated as authors release code or refine readme instructions, keeping the collection timely. For teams planning literature reviews, study groups, or rapid prototyping sprints, it acts as a central index to the year’s most relevant methods with working implementations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Learn_Data_Science_in_3_Months

    Learn_Data_Science_in_3_Months

    This is the Curriculum for "Learn Data Science in 3 Months"

    This project lays out a 12-week plan to go from basics to a portfolio-ready understanding of data science. It breaks the journey into clear stages: Python fundamentals, data wrangling, visualization, statistics, machine learning, and end-to-end projects. The schedule mixes learning and doing, encouraging you to build small deliverables each week—like notebooks, dashboards, and model demos—to reinforce skills. It also includes suggestions for datasets and problem domains so you aren’t stuck wondering what to analyze next. The plan is intentionally opinionated but flexible: you can swap resources while keeping the weekly objectives intact. By the end, you’re expected to have tangible artifacts to show employers or collaborators, not just notes and bookmarks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Learn_Machine_Learning_in_3_Months

    Learn_Machine_Learning_in_3_Months

    This is the code for "Learn Machine Learning in 3 Months"

    This repository outlines an ambitious self-study curriculum for learning machine learning in roughly three months, emphasizing breadth, momentum, and hands-on practice. It sequences core topics—math foundations, classic ML, deep learning, and applied projects—so learners can pace themselves week by week. The plan mixes reading, lectures, coding assignments, and small build-it-yourself projects to reinforce understanding through repetition and implementation. Because ML is a wide field, the curriculum favors pragmatic coverage over academic completeness, pointing learners to widely used tools and approachable resources. It’s intended to help beginners overcome decision paralysis by giving a concrete schedule and a minimal set of action-oriented tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep learning stack evolved, the classical ML sections remain highly relevant for production data problems. The code is crafted to be clear rather than clever, prioritizing readability for newcomers. As a historical snapshot and a still-useful primer, it pairs well with the second edition for understanding how the ecosystem matured.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment. The third edition updates the content for TensorFlow 2 and Keras, introduces new chapters (for example on reinforcement learning or generative models), and offers best-practice code that reflects current ecosystems. The notebooks are designed so you can run them locally or on Colab/online, making it accessible for learners regardless of infrastructure. The author includes solutions for exercises and sets up an environment specification so you can reproduce results. Because the discipline of ML evolves rapidly, this repo serves both as a learning path and a reference library you can revisit as models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15

    JAABA

    The Janelia Automated Animal Behavior Annotator

    The Janelia Automatic Animal Behavior Annotator (JAABA) is a machine learning-based system that enables researchers to automatically compute interpretable, quantitative statistics describing video of behaving animals. Through our system, users encode their intuition about the structure of behavior by labeling the behavior of the animal, e.g. walking, grooming, or following, in a small set of video frames. JAABA uses machine learning techniques to convert these manual labels into behavior detectors that can then be used to automatically classify the behaviors of animals in large data sets with high throughput. JAABA combines an intuitive graphical user interface, a fast and powerful machine learning algorithm, and visualizations of the classifier into an interactive, usable system for creating automatic behavior detectors. Documentation is available at: http://jaaba.sourceforge.net/
    Leader badge
    Downloads: 13 This Week
    Last Update:
    See Project
  • 16
    The Python Computer Vision Framework is an opened project deisgned for all those interested in computer vision. It aims at making computer vision more easy and structured and matlab-free. It may also be used for other artistic and scientific areas.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 17
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 12 This Week
    Last Update:
    See Project
  • 18
    jMIR

    jMIR

    Music research software

    jMIR is an open-source software suite implemented in Java for use in music information retrieval (MIR) research. It can be used to study music in the form of audio recordings, symbolic encodings and lyrical transcriptions, and can also mine cultural information from the Internet. It also includes tools for managing and profiling large music collections and for checking audio for production errors. jMIR includes software for extracting features, applying machine learning algorithms, applying heuristic error error checkers, mining metadata and analyzing metadata.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 19
    openModeller is a complete C++ framework for species potential distribution modelling. The project also includes a graphical user interface, a web service interface and an API for Python.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 20
    GPLAB is a Genetic Programming Toolbox for MATLAB
    Downloads: 9 This Week
    Last Update:
    See Project
  • 21
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 8 This Week
    Last Update:
    See Project
  • 22
    An open source optical flow algorithm framework for scientists and engineers alike.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    UnBBayes

    UnBBayes

    Framework & GUI for Bayes Nets and other probabilistic models.

    UnBBayes is a probabilistic network framework written in Java. It has both a GUI and an API with inference, sampling, learning and evaluation. It supports Bayesian networks, influence diagrams, MSBN, OOBN, HBN, MEBN/PR-OWL, PRM, structure, parameter and incremental learning. Please, visit our wiki (https://sourceforge.net/p/unbbayes/wiki/Home/) for more information. Check out the license section (https://sourceforge.net/p/unbbayes/wiki/License/) for our licensing policy.
    Leader badge
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    mlpy

    mlpy

    Machine Learning Python

    mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. mlpy provides high-level functions and classes allowing, with few lines of code, the design of rich workflows for classification, regression, clustering and feature selection. mlpy is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 3. mlpy is available both for Python >=2.6 and Python 3.X.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    The intention of this project is to give all serious users of the SNNS a place where they find a bugfix and patch management and where they get useful information about the SNNS.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next