Showing 216 open source projects for "framework"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Network Management Software and Tools for Businesses and Organizations | Auvik Networks Icon
    Network Management Software and Tools for Businesses and Organizations | Auvik Networks

    Mapping, inventory, config backup, and more.

    Reduce IT headaches and save time with a proven solution for automated network discovery, documentation, and performance monitoring. Choose Auvik because you'll see value in minutes, and stay with us to improve your IT for years to come.
    Learn More
  • 1
    PyTorch

    PyTorch

    Open source machine learning framework

    PyTorch is a Python package that offers Tensor computation (like NumPy) with strong GPU acceleration and deep neural networks built on tape-based autograd system. This project allows for fast, flexible experimentation and efficient production. PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and...
    Downloads: 118 This Week
    Last Update:
    See Project
  • 2
    deepface

    deepface

    A Lightweight Face Recognition and Facial Attribute Analysis

    DeepFace is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid face recognition framework wrapping state-of-the-art models: VGG-Face, FaceNet, OpenFace, DeepFace, DeepID, ArcFace, Dlib, SFace and GhostFaceNet. Experiments show that human beings have 97.53% accuracy on facial recognition tasks whereas those models already reached and passed that accuracy level.
    Downloads: 38 This Week
    Last Update:
    See Project
  • 3
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    ...Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create annotated datasets, and build AI models in a standardized MONAI paradigm. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    Burn

    Burn

    Burn is a new comprehensive dynamic Deep Learning Framework

    Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals. Burn emphasizes performance, flexibility, and portability for both training and inference. Developed in Rust, it is designed to empower machine learning engineers and researchers across industry and academia.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an awesome model on GitHub, written in JAX. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    flair

    flair

    A very simple framework for state-of-the-art NLP

    ...Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings and various transformers. A PyTorch NLP framework. Our framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    ...Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    MLJ.jl

    MLJ.jl

    A Julia machine learning framework

    MLJ (Machine Learning in Julia) is a toolbox written in Julia providing a common interface and meta-algorithms for selecting, tuning, evaluating, composing, and comparing about 200 machine learning models written in Julia and other languages. The functionality of MLJ is distributed over several repositories illustrated in the dependency chart below. These repositories live at the JuliaAI umbrella organization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    Ray

    Ray

    A unified framework for scalable computing

    ...Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    TextAttack

    TextAttack

    Python framework for adversarial attacks, and data augmentation

    Generating adversarial examples for NLP models. TextAttack is a Python framework for adversarial attacks, data augmentation, and model training in NLP.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu and Ali to complete text recognition locally. ...
    Downloads: 60 This Week
    Last Update:
    See Project
  • 17
    OpenRLHF

    OpenRLHF

    An Easy-to-use, Scalable and High-performance RLHF Framework

    OpenRLHF is an easy-to-use, scalable, and high-performance framework for Reinforcement Learning with Human Feedback (RLHF). It supports various training techniques and model architectures.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    ...They provide quick and convenient introduction on how to use DeepPavlov with complete, end-to-end examples. No installation needed. Guides explain the concepts and components of DeepPavlov. Follow step-by-step instructions to install, configure and extend DeepPavlov framework for your use case. DeepPavlov is an open-source framework for chatbots and virtual assistants development. It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MNN

    MNN

    MNN is a blazing fast, lightweight deep learning framework

    MNN is a highly efficient and lightweight deep learning framework. It supports inference and training of deep learning models, and has industry leading performance for inference and training on-device. At present, MNN has been integrated in more than 20 apps of Alibaba Inc, such as Taobao, Tmall, Youku, Dingtalk, Xianyu and etc., covering more than 70 usage scenarios such as live broadcast, short video capture, search recommendation, product searching by image, interactive marketing, equity distribution, security risk control. ...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 21
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ...TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 26 This Week
    Last Update:
    See Project
  • 23
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    Chemprop

    Chemprop

    Message Passing Neural Networks for Molecule Property Prediction

    Chemprop is a repository containing message-passing neural networks for molecular property prediction.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. An extension for OneFlow to target third-party compiler, such as XLA, TensorRT and OpenVINO etc.CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information. Distributed performance (efficiency) is the core technical difficulty of the deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next