Showing 1028 open source projects for "void-linux"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Scanpy

    Scanpy

    Single-cell analysis in Python

    Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing. The Python-based implementation efficiently deals with datasets of more than one million cells.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    Burn

    Burn

    Burn is a new comprehensive dynamic Deep Learning Framework

    Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals. Burn emphasizes performance, flexibility, and portability for both training and inference. Developed in Rust, it is designed to empower machine learning engineers and researchers across industry and academia.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    mlx

    mlx

    MLX: An array framework for Apple silicon

    MlX offers a local web interface to browse, download, and run ML models via Hugging Face or local sources. It supports searching by tags or tasks, visualization of model metadata, quick inference demos, automatic setup of runtime environments, and works with PyTorch, TensorFlow, and ONNX. Ideal for researchers exploring and testing models via browser.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    audioFlux

    audioFlux

    A library for audio and music analysis, feature extraction

    A library for audio and music analysis, and feature extraction. Can be used for deep learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. audioflux is a deep learning tool library for audio and music analysis, feature extraction. It supports dozens of time-frequency analysis transformation methods and hundreds of corresponding time-domain and frequency-domain feature combinations. It can be provided to deep learning networks for training and is used to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    PaddlePaddle

    PaddlePaddle

    PArallel Distributed Deep LEarning: Machine Learning Framework

    PaddlePaddle is an open source deep learning industrial platform with advanced technologies and a rich set of features that make innovation and application of deep learning easier. It is the only independent R&D deep learning platform in China, and has been widely adopted in various sectors including manufacturing, agriculture and enterprise service. PaddlePaddle covers core deep learning frameworks, basic model libraries, end-to-end development kits and more, with support for both...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Flyte
    Build production-grade data and ML workflows, hassle-free The infinitely scalable and flexible workflow orchestration platform that seamlessly unifies data, ML and analytics stacks. Don’t let friction between development and production slow down the deployment of new data/ML workflows and cause an increase in production bugs. Flyte enables rapid experimentation with production-grade software. Debug in the cloud by iterating on the workflows locally to achieve tighter feedback loops. As your...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    This is a C++ analytical library designed for data analysis similar to libraries in Python and R. For example, you would compare this to Pandas, R data.frame, or Polars. You can slice the data in many different ways. You can join, merge, and group-by the data. You can run various statistical, summarization, financial, and ML algorithms on the data. You can add your custom algorithms easily. You can multi-column sort, custom pick, and delete the data. DataFrame also includes a large...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    SageMaker Python SDK

    SageMaker Python SDK

    Training and deploying machine learning models on Amazon SageMaker

    SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the SDK, you can train and deploy models using popular deep learning frameworks Apache MXNet and TensorFlow. You can also train and deploy models with Amazon algorithms, which are scalable implementations of core machine learning algorithms that are optimized for SageMaker and GPU training. If you have your own algorithms built into SageMaker-compatible Docker...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    DeepChem

    DeepChem

    Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, etc

    DeepChem aims to provide a high-quality open-source toolchain that democratizes the use of deep learning in drug discovery, materials science, quantum chemistry, and biology. DeepChem currently supports Python 3.7 through 3.9 and requires these packages on any condition. DeepChem has a number of "soft" requirements. If you face some errors like ImportError: This class requires XXXX, you may need to install some packages. Deepchem provides support for TensorFlow, PyTorch, JAX and each...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    CML

    CML

    Continuous Machine Learning | CI/CD for ML

    Continuous Machine Learning (CML) is an open-source CLI tool for implementing continuous integration & delivery (CI/CD) with a focus on MLOps. Use it to automate development workflows, including machine provisioning, model training and evaluation, comparing ML experiments across project history, and monitoring changing datasets. CML can help train and evaluate models, and then generate a visual report with results and metrics, automatically on every pull request.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    ChatterBot

    ChatterBot

    Machine learning, conversational dialog engine for creating chat bots

    ChatterBot is a Python library that makes it easy to generate automated responses to a user’s input. ChatterBot uses a selection of machine learning algorithms to produce different types of responses. This makes it easy for developers to create chat bots and automate conversations with users. For more details about the ideas and concepts behind ChatterBot see the process flow diagram. The language independent design of ChatterBot allows it to be trained to speak any language. Additionally,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    Lance

    Lance

    Modern columnar data format for ML and LLMs implemented in Rust

    Lance is a columnar data format that is easy and fast to version, query and train on. It’s designed to be used with images, videos, 3D point clouds, audio and of course tabular data. It supports any POSIX file systems, and cloud storage like AWS S3 and Google Cloud Storage.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Rasa

    Rasa

    Open source machine learning framework to automate text conversations

    Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual assistants on Facebook Messenger, Slack, Google Hangouts, Webex Teams, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram, and Twilio or on your own custom conversational channels. Rasa helps you build contextual assistants capable of having layered conversations with lots of back-and-forths. In order for a human to have a meaningful exchange with a...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Intel Extension for PyTorch

    Intel Extension for PyTorch

    A Python package for extending the official PyTorch

    Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel...
    Downloads: 2 This Week
    Last Update:
    See Project