Showing 70 open source projects for "graph"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SINGA

    SINGA

    A distributed deep learning platform

    ...SINGA supports data parallel training across multiple GPUs (on a single node or across different nodes). SINGA supports various popular optimizers including stochastic gradient descent with momentum, Adam, RMSProp, and AdaGrad, etc. SINGA records the computation graph and applies the backward propagation automatically after forward propagation. The optimization of memory are implemented in the Device class. SINGA supports loading ONNX format models and saving models defined using SINGA APIs into ONNX format, which enables AI developers to use models across different libraries and tools. SINGA supports the time profiling of each of the operators buffered in the graph. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    ...Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    nGraph

    nGraph

    nGraph has moved to OpenVINO

    ...We strongly believe in providing freedom, performance, and ease of use to AI developers. Our documentation has extensive information about how to use nGraph Compiler stack to create an nGraph computational graph, integrate custom frameworks, and to interact with supported backends.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    X-DeepLearning

    X-DeepLearning

    An industrial deep learning framework for high-dimension sparse data

    X-DeepLearning (XDL for short) is a complete set of deep optimization solutions for high-dimensional sparse data scenarios (such as advertising/recommendation/search, etc.). XDL version 1.2 has been released recently. Performance optimization for large batch/low concurrency scenarios, 50-100% performance improvement in such scenarios. Storage and communication optimization, parameters are automatically allocated globally without manual intervention, and requests are merged to completely...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6

    Root Phenotyping Suite

    Three different software tools for phenotyping plant root images

    ...The software provides a robust, efficient and accurate means of phenotyping of roots, by detecting individual root tips and classifying them as belonging to a primary or lateral root. RootGraph is a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Internals

    TensorFlow Internals

    Open source ebook about TensorFlow kernel and implementation

    It is open source ebook about TensorFlow kernel and implementation mechanism, including programming model, computation graph, and distributed training for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Bender

    Bender

    Easily craft fast Neural Networks on iOS

    ...Bender provides the ease of use of CoreML with the flexibility of a modern ML framework. Bender allows you to run trained models, you can use Tensorflow, Keras, Caffe, the choice is yours. Either freeze the graph or export the weights to files. You can import a frozen graph directly from supported platforms or re-define the network structure and load the weights. Either way, it just takes a few minutes. Bender suports the most common ML nodes and layers but it is also extensible so you can write your own custom functions. With Core ML, you can integrate trained machine learning models into your app, it supports Caffe and Keras 1.2.2+ at the moment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SLING

    SLING

    A natural language frame semantics parser

    ...We do not yet have a full system that can extract facts from arbitrary text, but we have built a number of the subsystems needed for such a system. The SLING frame store is our basic framework for building and manipulating frame semantic graph structures. The Wiki flow pipeline can take a raw dump of Wikidata and convert this into one big frame graph.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    ...Our platform Easy Machine Learning presents a general-purpose dataflow-based system for easing the process of applying machine learning algorithms to real-world tasks. In the system, a learning task is formulated as a directed acyclic graph (DAG) in which each node represents an operation (e.g. a machine learning algorithm), and each edge represents the flow of the data from one node to its descendants.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code just like the rest of your program. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    This project aims to develop and share fast frequent subgraph mining and graph learning algorithms. Currently we release the frequent subgraph mining package FFSM and later we will include new functions for graph regression and classification package
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    Chordalysis

    Log-linear analysis (data modelling) for high-dimensional data

    ...However, due to its exponential nature, previous approaches did not allow scale-up to more than a dozen variables. We present here Chordalysis, a log-linear analysis method for big data. Chordalysis exploits recent discoveries in graph theory by representing complex models as compositions of triangular structures, also known as chordal graphs. Chordalysis makes it possible to discover the structure of datasets with thousands of variables on a standard desktop computer. Associated papers at ICDM 2013, ICDM 2014 and SDM 2015 can be found at http://www.francois-petitjean.com/Research/ YourKit is supporting Chordalysis open source project with its full-featured Java Profiler. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    Graphlet kernel framework

    Calculates similarity between neighborhoods of two vertices in a graph

    This software package provides a framework for calculating similarity between neighborhoods rooted at two vertices of interest in a labeled graph (undirected or directed). The list of available similarity functions includes: cumulative random walk, standard random walk, standard graphlet kernel, edit distance graphlet kernel, label substitution graphlet kernel and edge indel graphlet kernel. The graphlet kernel framework can be used for vertex (node) classification in graphs, kernel-based clustering, or community detection. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Matlab Community Detection Toolbox

    Matlab Community Detection Toolbox

    CDTB is a MATLAB toolbox which performs Community Detection

    We present the Community Detection Toolbox (CDTB), a MATLAB toolbox which can be used to perform community detection. The CDTB contains several functions from the following categories. 1. graph generators; 2. clustering algorithms; 2. cluster number selection functions; 4. clustering evaluation functions. Furthermore, CDTB is designed in a parametric manner so that the user can add his own functions and extensions. The CDTB can be used in at least three ways. The user can employ the functions from the MATLAB command line; or he can write his own code, incorporating the CDTB functions; or he can use the Graphical User Interface (GUI) which automates the community detection and includes some data visualization options.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    This project develops a simple, fast and easy to use Python graph library using NumPy, Scipy and PySparse.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    BIL++
    BIL++ is a set of standalone C++ packages for data processing in Bioinformatics (Graph mining, Bayesian networks, Genetic algorithm, Discretization, Gene expression data analysis, Hypothesis testing).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    An adaptive neural network and evolutionary algorithms approach to the machine learning tasks, based on the modular graph grammars. Tested on the "two spirals problem" and other tasks. Implemented in Matlab and C++.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BorderFlow
    BorderFlow implements a general-purpose graph clustering algorithm. It maximizes the inner to outer flow ratio from the border of each cluster to the rest of the graph.
    Downloads: 0 This Week
    Last Update:
    See Project