Showing 64 open source projects for "graph"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    DGL

    DGL

    Python package built to ease deep learning on graph

    ...We want to make it easy to implement graph neural networks model family. We also want to make the combination of graph based modules and tensor based modules (PyTorch or MXNet) as smooth as possible. DGL provides a powerful graph object that can reside on either CPU or GPU. It bundles structural data as well as features for a better control. We provide a variety of functions for computing with graph objects including efficient and customizable message passing primitives for Graph Neural Networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AmpliGraph

    AmpliGraph

    Python library for Representation Learning on Knowledge Graphs

    Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the dataset to include over 520,000 materials within 1 meV/atom of the convex hull as of August 2024. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    PyKEEN

    PyKEEN

    A Python library for learning and evaluating knowledge graph embedding

    PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-modal information). PyKEEN is a Python package for reproducible, facile knowledge graph embeddings. PyKEEN has a function pykeen.env() that magically prints relevant version information about PyTorch, CUDA, and your operating system that can be used for debugging. If you’re in a Jupyter Notebook, it will be pretty-printed as an HTML table.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    PyTextRank

    PyTextRank

    Python implementation of TextRank algorithms

    PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, for graph-based natural language work -- and related knowledge graph practices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ...Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring). ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    ...The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying tutorial. Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Angel

    Angel

    A Flexible and Powerful Parameter Server for large-scale ML

    Angel is a high-performance distributed machine learning and graph computing platform based on the philosophy of Parameter Server. It is tuned for performance with big data from Tencent and has a wide range of applicability and stability, demonstrating an increasing advantage in handling higher-dimension models. Angel is jointly developed by Tencent and Peking University, taking account of both high availability in industry and innovation in academia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    ...PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that currently provides compilation via C, JAX, and Numba. Based on one of the most widely-used Python tensor libraries: Theano.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ...ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ONNX Runtime training can accelerate the model training time on multi-node NVIDIA GPUs for transformer models with a one-line addition for existing PyTorch training scripts. Support for a variety of frameworks, operating systems and hardware platforms. Built-in optimizations that deliver up to 17X faster inferencing and up to 1.4X faster training.
    Downloads: 55 This Week
    Last Update:
    See Project
  • 12
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ...The platform can be easily deployed on multiple CPUs, GPUs and Google's proprietary chip, the tensor processing unit (TPU). TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. ...
    Downloads: 24 This Week
    Last Update:
    See Project
  • 13
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    ...TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found. We support and test ONNX opset-13 to opset-17. opset-6 to opset-12 should work but we don't test them. If you want the graph to be generated with a specific opset, use --opset in the command line, for example --opset 13. When running under tf-2.x tf2onnx will use the tensorflow V2 controlflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    ...Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. After compilation using the optimized graph should feel no different than running a TorchScript module. You also have access to TensorRT’s suite of configurations at compile time, so you are able to specify operating precision (FP32/FP16/INT8) and other settings for your module.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 15
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    Flux is an elegant approach to machine learning. It's a 100% pure Julia stack and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Flux provides a single, intuitive way to define models, just like mathematical notation. Julia transparently compiles your code, optimizing and fusing kernels for the GPU, for the best performance. Existing Julia libraries are differentiable and can be incorporated...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    MLDatasets.jl

    MLDatasets.jl

    Utility package for accessing common Machine Learning datasets

    This package represents a community effort to provide a common interface for accessing common Machine Learning (ML) datasets. In contrast to other data-related Julia packages, the focus of MLDatasets.jl is specifically on downloading, unpacking, and accessing benchmark datasets. Functionality for the purpose of data processing or visualization is only provided to a degree that is special to some datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    ...DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal structures, root cause analysis, interventions and counterfactuals. DoWhy builds on two of the most powerful frameworks for causal inference: graphical causal models and potential outcomes. For effect estimation, it uses graph-based criteria and do-calculus for modeling assumptions and identifying a non-parametric causal effect. For estimation, it switches to methods based primarily on potential outcomes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    BentoML

    BentoML

    Unified Model Serving Framework

    ...Parallelize compute-intense model inference workloads to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as a Docker image, that performs one step in the pipeline. For example, a component can be responsible for data preprocessing, data transformation, model training, and so on.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. An extension for OneFlow to target third-party compiler, such as XLA, TensorRT and OpenVINO etc.CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information. Distributed performance (efficiency) is the core technical difficulty of the deep learning framework. OneFlow focuses on performance improvement and heterogeneous...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. Printing those variables shows they have the same shape and dtype.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    GNNPCSAFT

    GNNPCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT app is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 24
    GNNPCSAFT Web App

    GNNPCSAFT Web App

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT Web App is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    spaGO

    spaGO

    Self-contained Machine Learning and Natural Language Processing lib

    A Machine Learning library written in pure Go designed to support relevant neural architectures in Natural Language Processing. Spago is self-contained, in that it uses its own lightweight computational graph both for training and inference, easy to understand from start to finish. The core module of Spago relies only on testify for unit testing. In other words, it has "zero dependencies", and we are committed to keeping it that way as much as possible. Spago uses a multi-module workspace to ensure that additional dependencies are downloaded only when specific features (e.g. persistent embeddings) are used. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next