Search Results for "edmonds-karp algorithm implementation in python"

Showing 46 open source projects for "edmonds-karp algorithm implementation in python"

View related business solutions
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 1
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior network...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    nghttp2

    nghttp2

    HTTP/2 C Library and tools

    nghttp2 is an implementation of HTTP/2 and its header compression algorithm HPACK in C. The framing layer of HTTP/2 is implemented as a form of reusable C library. On top of that, we have implemented HTTP/2 client, server and proxy. We have also developed a load test and benchmarking tool for HTTP/2. We have participated in httpbis working group since HTTP/2 draft-04, which is the first implementation draft. Since then we have updated nghttp2 library constantly to the latest specification...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Bayesian Optimization

    Bayesian Optimization

    Python implementation of global optimization with gaussian processes

    This is a constrained global optimization package built upon bayesian inference and gaussian process, that attempts to find the maximum value of an unknown function in as few iterations as possible. This technique is particularly suited for optimization of high cost functions, situations where the balance between exploration and exploitation is important. More detailed information, other advanced features, and tips on usage/implementation can be found in the examples folder. Follow the basic...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    AWS Encryption SDK for Java
    The AWS Encryption SDK is a client-side encryption library designed to make it easy for everyone to encrypt and decrypt data using industry standards and best practices. It enables you to focus on the core functionality of your application, rather than on how to best encrypt and decrypt your data. The AWS Encryption SDK is provided free of charge under the Apache 2.0 license. With the AWS Encryption SDK, you define a master key provider (Java and Python) or a keyring (C, C#/.NET, and JavaScript...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    ..., is intuitive and easy to select. HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    TextDistance

    TextDistance

    Compute distance between sequences

    Python library for comparing the distance between two or more sequences by many algorithms. For main algorithms, text distance try to call known external libraries (fastest first) if available (installed in your system) and possible (this implementation can compare this type of sequences). Install text distance with extras for this feature. Textdistance use benchmark results for algorithm optimization and try to call the fastest external lib first (if possible). TextDistance show benchmarks...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    MemU

    MemU

    MemU is an open-source memory framework for AI companions

    ... integration and a dedicated algorithm team for scenario-specific optimization. User behavior analysis, real-time monitoring, and automated agent optimization tools. 24/7 dedicated support team, custom SLAs, and professional implementation services.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    EPLB

    EPLB

    Expert Parallelism Load Balancer

    EPLB is DeepSeek’s open implementation of a load balancing algorithm designed for expert parallelism (EP) settings in MoE architectures. In EP, different “experts” are mapped to different GPUs or nodes, so load imbalance becomes a performance bottleneck if certain experts are invoked much more often. EPLB solves this by duplicating heavily used experts (redundancy) and then placing those duplicates across GPUs to even out computational load. It uses policies like hierarchical load balancing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DualPipe

    DualPipe

    A bidirectional pipeline parallelism algorithm

    DualPipe is a bidirectional pipeline parallelism algorithm open-sourced by DeepSeek, introduced in their DeepSeek-V3 technical framework. The main goal of DualPipe is to maximize overlap between computation and communication phases during distributed training, thus reducing idle GPU time (i.e. “pipeline bubbles”) and improving cluster efficiency. Traditional pipeline parallelism methods (e.g. 1F1B or staggered pipelining) leave gaps because forward and backward phases can’t fully overlap...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    CalcTools

    CalcTools

    A library of tools for math calculation

    ... of the implementation into the CLASSPATH
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C...
    Downloads: 21 This Week
    Last Update:
    See Project
  • 17
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation with research-friendly features. The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    TSNE-CUDA

    TSNE-CUDA

    GPU Accelerated t-SNE for CUDA with Python bindings

    This repo is an optimized CUDA version of FIt-SNE algorithm with associated python modules. We find that our implementation of t-SNE can be up to 1200x faster than Sklearn, or up to 50x faster than Multicore-TSNE when used with the right GPU. You can install binaries with anaconda for CUDA version 10.1 and 10.2 using conda install tsnecuda -c conda-forge. Tsnecuda supports CUDA versions 9.0 and later through source installation, check out the wiki for up to date installation instructions. Time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MADDPG

    MADDPG

    Code for the MADDPG algorithm from a paper

    MADDPG (Multi-Agent Deep Deterministic Policy Gradient) is the official code release from OpenAI’s paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The repository implements a multi-agent reinforcement learning algorithm that extends DDPG to scenarios where multiple agents interact in shared environments. Each agent has its own policy, but training uses centralized critics conditioned on the observations and actions of all agents, enabling learning in cooperative...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    AES Everywhere

    AES Everywhere

    Cross Language AES 256 Encryption Library

    AES Everywhere is Cross Language Encryption Library that provides the ability to encrypt and decrypt data using a single algorithm in different programming languages and on different platforms. This is an implementation of the AES algorithm, specifically CBC mode, with 256-bit key length and PKCS7 padding. It implements OpenSSL-compatible cryptography with randomly generated salt.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TextRank

    TextRank

    TextRank implementation for Python 3

    TextRank is an implementation of the TextRank algorithm for extractive text summarization and keyword extraction, inspired by Google’s PageRank.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DetectAndTrack

    DetectAndTrack

    The implementation of an algorithm presented in the CVPR18 paper

    DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in video...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Universe Starter Agent

    Universe Starter Agent

    A starter agent that can solve a number of universe environments

    The universe-starter-agent repository is an archived OpenAI codebase designed as a starter reinforcement-learning agent that can interact with and solve tasks in OpenAI’s Universe environment platform. Its purpose is to serve as a baseline or reference implementation so researchers or developers can see how to build agents that operate in real-time, visual environments (e.g., games, browser apps) via pixel observations and keyboard/mouse actions. Under the hood, this starter agent implements...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TextTeaser

    TextTeaser

    TextTeaser is an automatic summarization algorithm

    textteaser is an automatic text summarization algorithm implemented in Python. It extracts the most important sentences from an article to generate concise summaries that retain the core meaning of the original text. The algorithm uses features such as sentence length, keyword frequency, and position within the document to determine which sentences are most relevant. By combining these features with a simple scoring mechanism, it produces summaries that are both readable and informative...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next