Showing 18 open source projects for "multi-layer perceptron python"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    UForm

    UForm

    Multi-Modal Neural Networks for Semantic Search, based on Mid-Fusion

    UForm is a Multi-Modal Modal Inference package, designed to encode Multi-Lingual Texts, Images, and, soon, Audio, Video, and Documents, into a shared vector space! It comes with a set of homonymous pre-trained networks available on HuggingFace portal and extends the transfromers package to support Mid-fusion Models. Late-fusion models encode each modality independently, but into one shared vector space. Due to independent encoding late-fusion models are good at capturing coarse-grained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    Norfair is a customizable lightweight Python library for real-time multi-object tracking. Using Norfair, you can add tracking capabilities to any detector with just a few lines of code. Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    LazyLLM

    LazyLLM

    Easiest and laziest way for building multi-agent LLMs applications

    LazyLLM is an optimized, lightweight LLM server designed for easy and fast deployment of large language models. It is fully compatible with the OpenAI API specification, enabling developers to integrate their own models into applications that normally rely on OpenAI’s endpoints. LazyLLM emphasizes low resource usage and fast inference while supporting multiple models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    CTranslate2

    CTranslate2

    Fast inference engine for Transformer models

    CTranslate2 is a C++ and Python library for efficient inference with Transformer models. The project implements a custom runtime that applies many performance optimization techniques such as weights quantization, layers fusion, batch reordering, etc., to accelerate and reduce the memory usage of Transformer models on CPU and GPU. The execution is significantly faster and requires less resources than general-purpose deep learning frameworks on supported models and tasks thanks to many advanced optimizations: layer fusion, padding removal, batch reordering, in-place operations, caching mechanism, etc. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • Smart, Efficient, and Anonymous People Counting Solutions Icon
    Smart, Efficient, and Anonymous People Counting Solutions

    Capture your visitor traffic and draw insights from your data with right-sized footfall counters, app and a cloud-based analytics platform

    We help Retailers, Libraries, Casinos, Universities, Places of worship, Office buildings, and other industries to analyze and take action on their people traffic trend.
    Learn More
  • 10
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    MII makes low-latency and high-throughput inference possible, powered by DeepSpeed. The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    The NVIDIA Data Loading Library (DALI) is a library for data loading and pre-processing to accelerate deep learning applications. It provides a collection of highly optimized building blocks for loading and processing image, video and audio data. It can be used as a portable drop-in replacement for built-in data loaders and data iterators in popular deep learning frameworks. Deep learning applications require complex, multi-stage data processing pipelines that include loading, decoding,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    pipeless

    pipeless

    A computer vision framework to create and deploy apps in minutes

    Pipeless is an open-source computer vision framework to create and deploy applications without the complexity of building and maintaining multimedia pipelines. It ships everything you need to create and deploy efficient computer vision applications that work in real-time in just minutes. Pipeless is inspired by modern serverless technologies. It provides the development experience of serverless frameworks applied to computer vision. You provide some functions that are executed for new...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a...
    Downloads: 12 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next