Showing 13 open source projects for "gpu processing"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    DALI

    DALI

    A GPU-accelerated library containing highly optimized building blocks

    ...These data processing pipelines, which are currently executed on the CPU, have become a bottleneck, limiting the performance and scalability of training and inference. DALI addresses the problem of the CPU bottleneck by offloading data preprocessing to the GPU. Additionally, DALI relies on its own execution engine, built to maximize the throughput of the input pipeline.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    ...It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. It enables a simple, pluggable, and complete story for Production ML Serving including prediction, pre-processing, post-processing and explainability. KServe is being used across various organizations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    API-for-Open-LLM

    API-for-Open-LLM

    Openai style api for open large language models

    API-for-Open-LLM is a lightweight API server designed for deploying and serving open large language models (LLMs), offering a simple way to integrate LLMs into applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. ...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 8
    BentoML

    BentoML

    Unified Model Serving Framework

    ...Orchestrate distributed inference graph with multiple models via Yatai on Kubernetes. Easily configure CUDA dependencies for running inference with GPU. Automatically generate docker images for production deployment.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR algorithm. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    ...Running these deep learning models on large document or video datasets is costly and time-consuming. For example, the state-of-the-art object detection model takes multiple GPU years to process just a week’s videos from a single traffic monitoring camera. Besides the money spent on hardware, these models also increase the time that you spend waiting for the model inference to finish.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TurboTransformers

    TurboTransformers

    Fast and user-friendly runtime for transformer inference

    TurboTransformers is a high-performance inference framework optimized for running Transformer models efficiently on CPUs and GPUs. It improves latency and throughput for NLP applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next