Showing 23 open source projects for "processing"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    DeepSparse

    DeepSparse

    Sparsity-aware deep learning inference runtime for CPUs

    A sparsity-aware enterprise inferencing system for AI models on CPUs. Maximize your CPU infrastructure with DeepSparse to run performant computer vision (CV), natural language processing (NLP), and large language models (LLMs).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads to scale separately from the serving logic. Adaptive batching dynamically groups inference requests for optimal performance. ...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 4
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    ...By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    NNCF

    NNCF

    Neural Network Compression Framework for enhanced OpenVINO

    NNCF (Neural Network Compression Framework) is an optimization toolkit for deep learning models, designed to apply quantization, pruning, and other techniques to improve inference efficiency.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    ...It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and Canary Rollouts to your ML deployments. It enables a simple, pluggable, and complete story for Production ML Serving including prediction, pre-processing, post-processing and explainability. KServe is being used across various organizations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 9
    SparseML

    SparseML

    Libraries for applying sparsification recipes to neural networks

    SparseML is an optimization toolkit for training and deploying deep learning models using sparsification techniques like pruning and quantization to improve efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Argos KYC aims to provide a global online identity verification solution for KYC and AML screening. Icon
    Argos KYC aims to provide a global online identity verification solution for KYC and AML screening.

    For companies looking for an AI-powered identity verification solution

    Argos KYC is an identity verification service provider. Identify Anyone Anywhere Anytime. Argos KYC provides a seamless digital Know Your Customer experience. Build the identity management system for your business with a hassle-free KYC solution.
    Learn More
  • 10
    AutoGPTQ

    AutoGPTQ

    An easy-to-use LLMs quantization package with user-friendly apis

    AutoGPTQ is an implementation of GPTQ (Quantized GPT) that optimizes large language models (LLMs) for faster inference by reducing their computational footprint while maintaining accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    API-for-Open-LLM

    API-for-Open-LLM

    Openai style api for open large language models

    API-for-Open-LLM is a lightweight API server designed for deploying and serving open large language models (LLMs), offering a simple way to integrate LLMs into applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. Model pipelines using Ensembling or Business Logic Scripting (BLS). HTTP/REST and GRPC inference protocols based on the community-developed KServe protocol. A C API and Java API allow Triton to link directly into your application for edge and other in-process use cases.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Adapters

    Adapters

    A Unified Library for Parameter-Efficient Learning

    Adapters is an add-on library to HuggingFace's Transformers, integrating 10+ adapter methods into 20+ state-of-the-art Transformer models with minimal coding overhead for training and inference. Adapters provide a unified interface for efficient fine-tuning and modular transfer learning, supporting a myriad of features like full-precision or quantized training (e.g. Q-LoRA, Q-Bottleneck Adapters, or Q-PrefixTuning), adapter merging via task arithmetics or the composition of multiple adapters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Norfair

    Norfair

    Lightweight Python library for adding real-time multi-object tracking

    ...Any detector expressing its detections as a series of (x, y) coordinates can be used with Norfair. This includes detectors performing tasks such as object or keypoint detection. It can easily be inserted into complex video processing pipelines to add tracking to existing projects. At the same time, it is possible to build a video inference loop from scratch using just Norfair and a detector. Supports moving camera, re-identification with appearance embeddings, and n-dimensional object tracking. Norfair provides several predefined distance functions to compare tracked objects and detections. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    ...Integrate and combine models from Sklearn, PyTorch, HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Train models on your data in your datastore simply by querying without additional ingestion and pre-processing.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging Face Inference Toolkit implements various additional environment variables to simplify your deployment experience. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    ...Among many uses, the toolkit supports techniques used to reduce latency and inference costs for cloud and edge devices (e.g. mobile, IoT). Deploy models to edge devices with restrictions on processing, memory, power consumption, network usage, and model storage space. Enable execution on and optimize for existing hardware or new special purpose accelerators. Choose the model and optimization tool depending on your task. In many cases, pre-optimized models can improve the efficiency of your application. Try the post-training tools to optimize an already-trained TensorFlow model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    ...It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    towhee

    towhee

    Framework that is dedicated to making neural data processing

    ...Towhee provides out-of-the-box integration with your favorite libraries, tools, and frameworks, making development quick and easy. Towhee includes a pythonic method-chaining API for describing custom data processing pipelines. We also support schemas, making processing unstructured data as easy as handling tabular data.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    Over the last decade, AI models have radically changed the world of natural language processing and computer vision. They are accurate on various tasks ranging from question answering to object tracking in videos. To use an AI model, the user needs to program against multiple low-level libraries, like PyTorch, Hugging Face, Open AI, etc. This tedious process often leads to a complex AI app that glues together these libraries to accomplish the given task.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Medusa

    Medusa

    Framework for Accelerating LLM Generation with Multiple Decoding Heads

    Medusa is a framework aimed at accelerating the generation capabilities of Large Language Models (LLMs) by employing multiple decoding heads. This approach allows for parallel processing during text generation, significantly enhancing throughput and reducing response times. Medusa is designed to be simple to implement and integrates with existing LLM infrastructures, making it a practical solution for scaling LLM applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next