Python LLM Inference Tools

View 130 business solutions

Browse free open source Python LLM Inference Tools and projects below. Use the toggles on the left to filter open source Python LLM Inference Tools by OS, license, language, programming language, and project status.

  • Zenflow- The AI Workflow Engine for Software Devs Icon
    Zenflow- The AI Workflow Engine for Software Devs

    Parallel agents. Multi-agent orchestration. Specs that turn into shipped code. Zenflow automates planning, coding, testing, and verification.

    Zenflow is the AI workflow engine built for real teams. Parallel agents plan, code, test, and verify in one workflow. With spec-driven development and deep context, Zenflow turns requirements into production-ready output so teams ship faster and stay in flow.
    Try free now
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    GPT4All

    GPT4All

    Run Local LLMs on Any Device. Open-source

    GPT4All is an open-source project that allows users to run large language models (LLMs) locally on their desktops or laptops, eliminating the need for API calls or GPUs. The software provides a simple, user-friendly application that can be downloaded and run on various platforms, including Windows, macOS, and Ubuntu, without requiring specialized hardware. It integrates with the llama.cpp implementation and supports multiple LLMs, allowing users to interact with AI models privately. This project also supports Python integrations for easy automation and customization. GPT4All is ideal for individuals and businesses seeking private, offline access to powerful LLMs.
    Downloads: 117 This Week
    Last Update:
    See Project
  • 2
    vLLM

    vLLM

    A high-throughput and memory-efficient inference and serving engine

    vLLM is a fast and easy-to-use library for LLM inference and serving. High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more.
    Downloads: 29 This Week
    Last Update:
    See Project
  • 3
    EasyOCR

    EasyOCR

    Ready-to-use OCR with 80+ supported languages

    Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding. Second-generation models: multiple times smaller size, multiple times faster inference, additional characters and comparable accuracy to the first generation models. EasyOCR will choose the latest model by default but you can also specify which model to use. Model weights for the chosen language will be automatically downloaded or you can download them manually from the model hub. The idea is to be able to plug-in any state-of-the-art model into EasyOCR. There are a lot of geniuses trying to make better detection/recognition models, but we are not trying to be geniuses here. We just want to make their works quickly accessible to the public.
    Downloads: 24 This Week
    Last Update:
    See Project
  • 4
    LMDeploy

    LMDeploy

    LMDeploy is a toolkit for compressing, deploying, and serving LLMs

    LMDeploy is a toolkit designed for compressing, deploying, and serving large language models (LLMs). It offers tools and workflows to optimize LLMs for production environments, ensuring efficient performance and scalability. LMDeploy supports various model architectures and provides deployment solutions across different platforms.
    Downloads: 13 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. A large set of these technologies are being deployed into businesses (the real world) in what we consider a production setting.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme compression for an unparalleled inference latency and model size reduction with low costs DeepSpeed offers a confluence of system innovations, that has made large scale DL training effective, and efficient, greatly improved ease of use, and redefined the DL training landscape in terms of scale that is possible. These innovations such as ZeRO, 3D-Parallelism, DeepSpeed-MoE, ZeRO-Infinity, etc. fall under the training pillar.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 7
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 8
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document datasets, comparable with GoogleVision/AWS Textract. Easy integration (available templates for browser demo & API deployment). End-to-End OCR is achieved in docTR using a two-stage approach: text detection (localizing words), then text recognition (identify all characters in the word). As such, you can select the architecture used for text detection, and the one for text recognition from the list of available implementations.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 9
    Xorbits Inference

    Xorbits Inference

    Replace OpenAI GPT with another LLM in your app

    Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop. Xorbits Inference(Xinference) is a powerful and versatile library designed to serve language, speech recognition, and multimodal models. With Xorbits Inference, you can effortlessly deploy and serve your or state-of-the-art built-in models using just a single command. Whether you are a researcher, developer, or data scientist, Xorbits Inference empowers you to unleash the full potential of cutting-edge AI models.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Infinity

    Infinity

    Low-latency REST API for serving text-embeddings

    Infinity is a high-throughput, low-latency REST API for serving vector embeddings, supporting all sentence-transformer models and frameworks. Infinity is developed under MIT License. Infinity powers inference behind Gradient.ai and other Embedding API providers.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    LLM Foundry

    LLM Foundry

    LLM training code for MosaicML foundation models

    Introducing MPT-7B, the first entry in our MosaicML Foundation Series. MPT-7B is a transformer trained from scratch on 1T tokens of text and code. It is open source, available for commercial use, and matches the quality of LLaMA-7B. MPT-7B was trained on the MosaicML platform in 9.5 days with zero human intervention at a cost of ~$200k. Large language models (LLMs) are changing the world, but for those outside well-resourced industry labs, it can be extremely difficult to train and deploy these models. This has led to a flurry of activity centered on open-source LLMs, such as the LLaMA series from Meta, the Pythia series from EleutherAI, the StableLM series from StabilityAI, and the OpenLLaMA model from Berkeley AI Research.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 12
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. Just using Python. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on top of it. SuperDuperDB enables vector search in your existing database. Integrate and combine models from Sklearn, PyTorch, HuggingFace with AI APIs such as OpenAI to build even the most complex AI applications and workflows. Train models on your data in your datastore simply by querying without additional ingestion and pre-processing.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    Over the last decade, AI models have radically changed the world of natural language processing and computer vision. They are accurate on various tasks ranging from question answering to object tracking in videos. To use an AI model, the user needs to program against multiple low-level libraries, like PyTorch, Hugging Face, Open AI, etc. This tedious process often leads to a complex AI app that glues together these libraries to accomplish the given task. This programming complexity prevents people who are experts in other domains from benefiting from these models. Running these deep learning models on large document or video datasets is costly and time-consuming. For example, the state-of-the-art object detection model takes multiple GPU years to process just a week’s videos from a single traffic monitoring camera. Besides the money spent on hardware, these models also increase the time that you spend waiting for the model inference to finish.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    Genv

    Genv

    GPU environment management and cluster orchestration

    Genv is an open-source environment and cluster management system for GPUs. Genv lets you easily control, configure, monitor and enforce the GPU resources that you are using in a GPU machine or cluster. It is intended to ease up the process of GPU allocation for data scientists without code changes.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    OpenLLM

    OpenLLM

    Operating LLMs in production

    An open platform for operating large language models (LLMs) in production. Fine-tune, serve, deploy, and monitor any LLMs with ease. With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more. Serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    Oumi

    Oumi

    Everything you need to build state-of-the-art foundation models

    Oumi is an open-source framework that provides everything needed to build state-of-the-art foundation models, end-to-end. It aims to simplify the development of large-scale machine-learning models.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    AutoGPTQ

    AutoGPTQ

    An easy-to-use LLMs quantization package with user-friendly apis

    AutoGPTQ is an implementation of GPTQ (Quantized GPT) that optimizes large language models (LLMs) for faster inference by reducing their computational footprint while maintaining accuracy.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    DeepSparse

    DeepSparse

    Sparsity-aware deep learning inference runtime for CPUs

    A sparsity-aware enterprise inferencing system for AI models on CPUs. Maximize your CPU infrastructure with DeepSparse to run performant computer vision (CV), natural language processing (NLP), and large language models (LLMs).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of code.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase, separator), scripts (Latin, Cyrillic) and blocks (ASCII, Cyrilic). File sizes, creation dates, dimensions, indication of truncated images and existance of EXIF metadata. Mostly global details about the dataset (number of records, number of variables, overall missigness and duplicates, memory footprint). Comprehensive and automatic list of potential data quality issues (high correlation, skewness, uniformity, zeros, missing values, constant values, between others).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    Seldon Core

    Seldon Core

    An MLOps framework to package, deploy, monitor and manage models

    The de facto standard open-source platform for rapidly deploying machine learning models on Kubernetes. Seldon Core, our open-source framework, makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. Seldon Core serves models built in any open-source or commercial model building framework. You can make use of powerful Kubernetes features like custom resource definitions to manage model graphs. And then connect your continuous integration and deployment (CI/CD) tools to scale and update your deployment. Built on Kubernetes, runs on any cloud and on-premises. Framework agnostic, supports top ML libraries, toolkits and languages. Advanced deployments with experiments, ensembles and transformers. Our open-source framework makes it easier and faster to deploy your machine learning models and experiments at scale on Kubernetes. The Kubeflow project is dedicated to making deployments of machine learning (ML) workflows on Kubernetes.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 24
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This allows developers to completely avoid implementing MLOps, ETL pipelines, model deployment, data migration, and synchronization. Using Superduper is simply "CAPE": Connect to your data, apply arbitrary AI to that data, package and reuse the application on arbitrary data, and execute AI-database queries and predictions on the resulting AI outputs and data.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 25
    Text Generation Inference

    Text Generation Inference

    Large Language Model Text Generation Inference

    Text Generation Inference is a high-performance inference server for text generation models, optimized for Hugging Face's Transformers. It is designed to serve large language models efficiently with optimizations for performance and scalability.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next